• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of crystal structure prediction methods using machine learning

Research Project

Project/Area Number 18K13474
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 13010:Mathematical physics and fundamental theory of condensed matter physics-related
Research InstitutionNagaoka University of Technology (2019)
National Institute for Materials Science (2018)

Principal Investigator

Yamashita Tomoki  長岡技術科学大学, 産学融合トップランナー養成センター, 特任准教授 (60793099)

Project Period (FY) 2018-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Keywords結晶構造探索 / 機械学習 / 第一原理計算 / ベイズ最適化 / 進化的アルゴリズム / ランダムサーチ / マテリアルズインフォマティクス
Outline of Final Research Achievements

We have developed crystal structure prediction methods. The code development of Bayesian optimization and evolutionary algorithm has done and implemented in the open source software, CrySPY(https://github.com/Tomoki-YAMASHITA/CrySPY). CrySPY is written in Python to be used widely. Moreover the document and web site are published.

Academic Significance and Societal Importance of the Research Achievements

本研究により、オープンソースの結晶構造探索ツールであるCrySPYを公開することができた。CrySPYは機械学習を用いた高効率な安定構造探索が可能であり、新材料設計の基盤となるツールとして誰もが利用可能である。半年に一度の頻度でCrySPYのチュートリアルセミナーも開催しており、大学に所属する研究者や学生および企業の研究者などの間で利用されるようになった。

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • Research Products

    (14 results)

All 2020 2019 2018 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (10 results) (of which Int'l Joint Research: 7 results,  Invited: 1 results) Remarks (3 results)

  • [Journal Article] Adjusting the descriptor for a crystal structure search using Bayesian optimization2020

    • Author(s)
      Sato Nobuya、Yamashita Tomoki、Oguchi Tamio、Hukushima Koji、Miyake Takashi
    • Journal Title

      Physical Review Materials

      Volume: 4 Issue: 3 Pages: 033801-033801

    • DOI

      10.1103/physrevmaterials.4.033801

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] Hybrid Algorithm of Bayesian Optimization and Evolutionary Algorithm in Crystal Structure Prediction2019

    • Author(s)
      Tomoki Yamashita, Shinichi Kanehira, Nobuya Sato, Hiori Kino, Koji Tsuda, Takashi Miyake, and Tamio Oguchi
    • Organizer
      MATERIALS RESEARCH MEETING 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Descriptor for Efficient Crystal Prediction Using the Bayesian Optimization2019

    • Author(s)
      Nobuya Sato, Tomoki Yamashita, Tamio Oguchi, Koji Hukushima, and Takashi Miyake
    • Organizer
      MATERIALS RESEARCH MEETING 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Parameter in a Descriptor for Efficient Crystal Structure Search Using the Bayesian Optimization2019

    • Author(s)
      Nobuya Sato, Tomoki Yamashita, Tamio Oguchi, Koji Hukushima, and Takashi Miyake
    • Organizer
      The 22nd Asian Workshop on First-Principles Electronic Structure Calculations
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 結晶構造探索におけるベイズ最適化と進化的アルゴリズムのハイブリッドアルゴリズム2019

    • Author(s)
      山下智樹,兼平慎一,佐藤暢哉,木野日織,津田宏治,三宅隆,小口多美夫
    • Organizer
      日本物理学会2019年秋季大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Searching Efficiency of Bayesian Optimization and Evolutionary Algorithm in Crystal Structure Prediction2019

    • Author(s)
      Tomoki Yamashita, Shinichi Kanehira, Nobuya Sato, Hiori Kino, Koji Tsuda, Takashi Miyake, and Tamio Oguchi
    • Organizer
      10th International Conference on Materials for Advanced Technologies
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Crystal Structure Prediction by Bayesian Optimization and Evolutionary Algorithm2019

    • Author(s)
      Tomoki Yamashita, Shinichi Kanehira, N. Sato, Hiori Kino, Koji Tsuda, Takashi Miyake, and Tamio Oguchi
    • Organizer
      APS March Meeting 2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Bayes最適化を用いた結晶構造探索の効率と記述子のパラメータ2019

    • Author(s)
      佐藤暢哉,山下智樹,小口多美夫,福島孝治,三宅隆
    • Organizer
      日本物理学会第74回年次大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Development of crystal structure prediction tool2019

    • Author(s)
      Tomoki Yamashita, Kei Terayama, Shinichi Kanehira, N. Sato, Hiori Kino, Koji Tsuda, Takashi Miyake, and Tamio Oguchi
    • Organizer
      PRESTO International Symposium on Materials Informatics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Crystal structure prediction by machine learning2018

    • Author(s)
      Tomoki Yamashita
    • Organizer
      CSRN-OSAKA Annual Workshop 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Bayes最適化を用いた結晶構造探索における記述子2018

    • Author(s)
      佐藤暢哉,山下智樹,小口多美夫,福島孝治,三宅隆
    • Organizer
      日本物理学会2018年秋季大会
    • Related Report
      2018 Research-status Report
  • [Remarks] CrySPY

    • URL

      https://tomoki-yamashita.github.io/CrySPY/

    • Related Report
      2019 Annual Research Report
  • [Remarks] CrySPY

    • URL

      https://github.com/Tomoki-YAMASHITA/CrySPY

    • Related Report
      2018 Research-status Report
  • [Remarks] チュートリアルと解説

    • URL

      https://tomoki-yamashita.github.io/cryspy/tutorial/outline.html

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi