• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New Approach to Non-perturbative Quantum Field Theory Inspired by Gradient Flow

Research Project

Project/Area Number 18K13546
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 15010:Theoretical studies related to particle-, nuclear-, cosmic ray and astro-physics
Research InstitutionInstitute of Physical and Chemical Research (2020-2022)
Kyoto University (2019)
Kyoto Sangyo University (2018)

Principal Investigator

Kikuchi Kengo  国立研究開発法人理化学研究所, 数理創造プログラム, 基礎科学特別研究員 (20792724)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords場の量子論 / グラディエントフロー / 超対称性 / 自発的対称性の破れ / 場の理論 / 素粒子論 / 超対称性理論 / スファレロン
Outline of Final Research Achievements

The gradient flow is a new procedure to suppress the divergence in gauge theory. The gradient flow equation is a kind of diffusion equation, and the correlation function of the flow field given by the solution has a good property, which is called the ultraviolet (UV) finiteness. In the gradient flow, any correlator of the flowed field is UV finite without any extra renormalization at positive flow time if the four-dimensional theory is properly renormalized. This research is the foundation of the method of quantum field theory, which focuses on the properties of the equation itself.
The results of this research can be roughly divided into two categories. One is the theoretical aspect of the gradient flow equation, especially its extension to supersymmetric theory. The other is phenomenological applications, in particular, a new method to obtain sphaleron solutions and to study the phase structure of spontaneous gauge symmetry breaking using the gradient flow method.

Academic Significance and Societal Importance of the Research Achievements

本研究全体を通して明らかにされたことは、グラディエントフローの方法が、極めて限定的な系にのみ成り立つものではなく、広く様々な理論において、成り立つものであるということである。これによりSU(N)Yang-Mills理論、格子ゲージ理論での応用のみに留まらず、超対称性理論、及び現象論や自発的対称性の破れの解析などの新たな応用へとつながった。本研究におけるグラディエントフローの基礎的な解析により、その適用範囲が拡張され、より一般的に理解されたことは、今後の場の量子論の解析手法の発展において、非常に大きな学術的意義をもつ。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (11 results)

All 2023 2022 2021 2020 2019 2018

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (8 results)

  • [Journal Article] Gradient-flowed order parameter for spontaneous gauge symmetry breaking2023

    • Author(s)
      Kengo.Kikuchi, Kenji.Nishiwaki, Kin-ya.Oda
    • Journal Title

      European Physical Journal C

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Obtaining the sphaleron field configurations with gradient flow2020

    • Author(s)
      Yu Hamada, Kengo Kikuchi
    • Journal Title

      Physical Review D

      Volume: 101 Issue: 9 Pages: 39-60

    • DOI

      10.1103/physrevd.101.096014

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Supersymmetric gradient flow in the Wess-Zumino model2019

    • Author(s)
      Daisuke Kadoh, Kengo Kikuchi, Naoya Ukita
    • Journal Title

      Phys.Rev.D 100 (2019) 1, 014501

      Volume: - Issue: 1

    • DOI

      10.1103/physrevd.100.014501

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] グラディエントフローによるゲージ対称性の自発的破れの秩序変数2022

    • Author(s)
      菊地健吾
    • Organizer
      日本物理学会2023春季大会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Wess-Zuminoグラディエントフローの紫外有限性2021

    • Author(s)
      加堂大輔, 菊地健吾, 浮田尚哉
    • Organizer
      日本物理学会第76年次大会
    • Related Report
      2020 Research-status Report
  • [Presentation] グラディエントフローと非繰り込み定理2020

    • Author(s)
      加堂大輔, 菊地健吾, 浮田尚哉
    • Organizer
      日本物理学会2020年秋季大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Sphaleron from gradient flow2020

    • Author(s)
      濱田佑, 菊地健吾
    • Organizer
      日本物理学会2020年秋季大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Wess-Zuminoグラディエントフローの有限性2020

    • Author(s)
      加堂大輔, 菊地健吾, 浮田尚哉
    • Organizer
      日本物理学会第75年次大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Wess-Zuminoグラディエントフローとその摂動論2019

    • Author(s)
      加堂大輔, 菊地健吾, 浮田尚哉
    • Organizer
      日本物理学会第74年次大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Wess-Zumino模型に対するグラディエントフロー方程式2018

    • Author(s)
      加堂大輔, 菊地健吾, 浮田尚哉
    • Organizer
      日本物理学会2018年秋季大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Wess-Zumino模型に対するグラディエントフロー方程式2018

    • Author(s)
      菊地健吾
    • Organizer
      第8回日大理工・益川塾連携素粒子物理学シンポジウム
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi