• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Toward improvement on Monte Carlo method by machine learning

Research Project

Project/Area Number 18K13548
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 15010:Theoretical studies related to particle-, nuclear-, cosmic ray and astro-physics
Research InstitutionInstitute of Physical and Chemical Research

Principal Investigator

Tanaka Akinori  国立研究開発法人理化学研究所, 革新知能統合研究センター, 上級研究員 (20791924)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords機械学習 / 場の量子論 / マルコフ連鎖モンテカルロ法 / ハイブリッドモンテカルロ法 / Machine learning / Monte Carlo
Outline of Final Research Achievements

The purpose of this project is developing Markov Chain Monte-Carlo (MCMC) method accelerated by machine learning techniques. To achieve it, I focus on so-called Self Learning Monte-Carlo (SLMC) method that enables training during execution of MCMC and modifying the bias of the trained model in the generation step, and I apply this method to some physical theories. In the end of this project, we have achieved to make SLMC supported simulation of lattice gauge theory with dynamical fermions and non-commutative gauge group (SU(2)). We have checked its results and shown reduction of the autocorrelation.

Academic Significance and Societal Importance of the Research Achievements

機械学習の手法を物理学に、より広くは科学分野に応用しようという動きが広がっているが、その場合におそらく最も重要な問題は、機械学習モデルの「間違い」を、精密さが要求される科学分野でどのように取り扱うかだと思われる。その点で、SLMCを用いたシミュレーションは(応用先の理論がわかっている場合には)、Metropolis-Hastingsテストを挟むことで正確さを担保するという意味で一つの解法を与えている。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (11 results)

All 2023 2021 2020 2019 2018

All Journal Article (4 results) (of which Peer Reviewed: 3 results,  Open Access: 4 results) Presentation (6 results) (of which Int'l Joint Research: 5 results,  Invited: 4 results) Funded Workshop (1 results)

  • [Journal Article] Self-learning Monte Carlo for non-Abelian gauge theory with dynamical fermions2023

    • Author(s)
      Nagai Yuki、Tanaka Akinori、Tomiya Akio
    • Journal Title

      Physical Review D

      Volume: 107 Issue: 5 Pages: 1-16

    • DOI

      10.1103/physrevd.107.054501

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Self-learning Monte-Carlo for non-abelian gauge theory with dynamical fermions2020

    • Author(s)
      Nagai, Yuki, Akinori Tanaka, and Akio Tomiya
    • Journal Title

      arXiv

      Volume: preprint Pages: 1-24

    • Related Report
      2020 Research-status Report
    • Open Access
  • [Journal Article] Self-learning Monte Carlo method with Behler-Parrinello neural networks2020

    • Author(s)
      Nagai Yuki、Okumura Masahiko、Tanaka Akinori
    • Journal Title

      Physical Review B

      Volume: 101 Issue: 11 Pages: 115111-115111

    • DOI

      10.1103/physrevb.101.115111

    • NAID

      130008147942

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Discriminator optimal transport2019

    • Author(s)
      Akinori Tanaka
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 32

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Self-learning Monte-Carlo for non-abelian gauge theory with dynamical fermions2021

    • Author(s)
      Akio Tomiya (RIKEN) Yuki Nagai (JAEA) Akinori Tanaka (RIKEN)
    • Organizer
      APS April Meeting 2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Discriminator optimal transport2019

    • Author(s)
      Akinori Tanaka
    • Organizer
      Advances in Neural Information Processing Systems, 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 機械学習によるマルコフ連鎖モンテカルロ法の高速化へ向けて2019

    • Author(s)
      田中章詞
    • Organizer
      日本物理学会第74回年次大会 シンポジウム 機械学習と物理
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Machine learning techniques to probe theoretical physics2018

    • Author(s)
      Akinori Tanaka
    • Organizer
      Strings and Fields 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Machine Learning and its application to lattice Monte Carlo simulations2018

    • Author(s)
      Akinori Tanaka
    • Organizer
      5th Joint Meeting of the APS and the Physical Society of Japan
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Toward reducing autocorrelation in HMC2018

    • Author(s)
      Akinori Tanaka
    • Organizer
      The Machine Learning in Geometry and Physics Workshop
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] Deep Learning And Physics 20192019

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi