Investigation of the mechanism of stress corrosion cracking based on multi-scale experiments and simulations
Project/Area Number |
18K13660
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 18010:Mechanics of materials and materials-related
|
Research Institution | Aoyama Gakuin University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | アルミニウム合金 / 応力腐食割れ / 疲労き裂進展 / 湿度 / 水素 / 転位 / マルチスケール解析 / 材料強度 |
Outline of Final Research Achievements |
In this study, the mechanisms of stress corrosion cracking and fatigue crack growth of aluminum in humid air were investigated. Cross section of specimen was observed after test was stopped without fracture. Then, the mechanism of stress corrosion cracking was studied. In hydrogen diffusion-dislocation dynamics simulation, the effect of hydrogen on interaction stress between dislocations under various conditions was investigated. Finally, fatigue crack growth tests were performed under compressive mean stress in humid air in order to assume actual pressure vessel. Fatigue crack growth threshold under compressive mean stress was revealed.
|
Academic Significance and Societal Importance of the Research Achievements |
近年,高圧水素を用いた燃料電池自動車などが実用化されている.しかし,高圧水素容器に用いられるアルミニウム合金に発生する応力腐食割れ(SCC)は,高圧水素容器の口金破壊というリスクの高い破壊事故の原因となることが明らかになってきた.このき裂進展メカニズムはディンプル破壊であり,大気中の水分から生成された水素の寄与が指摘されているが,メカニズムは明らかになっていない.また,アルミニウム合金の疲労き裂進展にも湿度の影響があることが指摘されている.湿潤環境中におけるアルミニウム合金のSCCき裂進展および疲労き裂進展メカニズムを解明することで高圧水素容器の安全性向上に貢献する.
|
Report
(3 results)
Research Products
(1 results)