Dynamic cavitation inception on the solid-fluid interface with fluid-structure interaction
Project/Area Number |
18K13662
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 18010:Mechanics of materials and materials-related
|
Research Institution | Chuo University (2019-2021) Meiji University (2018) |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | キャビテーション / 波動伝播 / アナロジー / 破壊 / 界面 / 衝撃 / 破壊力学 / 流体構造連成 / 圧力波 / 連続体力学 / 損傷力学 |
Outline of Final Research Achievements |
Prediction of cavitation inception is extremely important for the lifetime evaluation of fluid machinery. In this study, an analogy between crack growth in fracture mechanics of solids and growth of cavitation bubble in a fluid is considered with the intention of applying it to the inception and propagation of cavitation wavefront under pressure wave propagation to propose a new theory for predicting the generation of dynamic cavitation wavefront. Experiments were conducted in which pressure waves were propagated to a bubble nucleus at a solid-fluid interface, then, the critical pressure for the bubble growth was determined. Referring Griffith's energy equilibrium derivation process showed that it is possible to derive an indicator that accurately predicts cavitation generation by considering the energy stored in the fluid itself due to compression caused by pressure fluctuations.
|
Academic Significance and Societal Importance of the Research Achievements |
従来の研究におけるキャビテーションの発生モデルでは流体中に存在する微小な気泡核の分布量によってキャビテーション発生圧力が定義されていたが,流体中に気泡核が存在していてもキャビテーションが発生しない事例が確認されている.本研究では流体中のキャビテーション発生に固体の破壊力学におけるき裂の進展のアナロジーを適用することを検討し,キャビテーション発生を精度よく予測する新しい理論を創出できる可能性を示した.本研究成果は動的キャビテーション波面の生成を積極的に制御する新技術の創出によって流体機械の長寿命化に資するものであり,また固体と流体の「破壊」を統一して扱える新しい学理の発展に資するものである.
|
Report
(5 results)
Research Products
(9 results)