Experimental Measurement of Thermal Flow Field in Near-wall Region for Development of Microparticle Manipulation Technique Using Evanescent Wave
Project/Area Number |
18K13701
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | エバネッセント光 / 放射圧 / 固液界面 / 微粒子操作 / 温度計測 / 粘度計測 / 熱泳動 / 光圧 / 熱流動場 |
Outline of Final Research Achievements |
The present study aimed at experimental evaluation and understanding of the microparticle motion in the evanescent field where dielectric particles, electromagnetic field and thermal flow field interact each other for the purpose of developing a microparticle manipulation technique near solid wall. The evanescent wave was generated by the total internal reflection of a laser beam at the interface between glass and aqueous solution, in which polystyrene microparticles were suspended. The particle motion induced by the radiation pressure in the traveling direction of the evanescent wave was measured, and the effects of the laser light intensity, incident angle of total internal reflection, and particle size on the velocity of particles in the evanescent field were evaluated. We also developed fluorescence-based nonintrusive measurement techniques for temperature and fluid viscosity to evaluate the influence of thermal flow field on the particle motion in the evanescent field.
|
Academic Significance and Societal Importance of the Research Achievements |
マイクロ・ナノメートルオーダーの微粒子を自在に操る手法は,マイクロ流体デバイスにおける細胞や液滴の選別・輸送技術から,新規光学材料や素子開発のための粒子集積化・配列技術まで応用先が広く,革新的な技術開発が期待される.本課題は固液界面に特化した微粒子操作技術の確立に向けて,エバネッセント場中の粒子に働く放射圧や熱的・流体力学的作用の実験的評価を行った.得られた知見は,エバネッセント場内の微粒子運動に関する体系的理解の一助となるもので,光と熱流動の相乗効果による新規輸送技術の提案の基礎になる.また本課題で開発した界面近傍温度計測法は今後,沸騰現象など様々な固液界面熱流動現象への適用が期待される.
|
Report
(4 results)
Research Products
(9 results)