Project/Area Number |
18K13723
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 20020:Robotics and intelligent system-related
|
Research Institution | Tohoku University |
Principal Investigator |
Ambe Yuichi 東北大学, 工学研究科, 助教 (90778622)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
|
Keywords | 多足歩行 / 進行波 / 後退波 / 肢間協調 / 感覚フィードバック / 波 |
Outline of Final Research Achievements |
The purpose of this study was to understand the generation mechanism and functions of various waves (direct-wave, retrograde-wave, and source-wave) observed in the multi-legged locomotion and to apply the findings to robots. The main results of the study are as follows. (1) Wave generation mechanism: The study designed a simple mathematical multi-legged model and clarified that the effect of sensory feedback generated three types of gait corresponding to direct-wave, retrograde-waves, and source-wave gaits. Furthermore, the mechanism is generalized to the number of legs by deriving analytical solutions. In addition, the derivation of the mapping structure of the dynamical system clarified the reason why sink-wave did not exist. (2) Function of waves: The study investigated the effects of direct-wave and retrograde-wave on the body's lateral undulation and found that the retrograde-wave suppressed the body's undulation and contributed to the increase locomotion speed.
|
Academic Significance and Societal Importance of the Research Achievements |
感覚フィードバックを通した身体と神経系の相互作用は,脚をもつ生物の歩容生成や適応的な歩容に重要な役割を果たしており,その効果を理解してロボット制御に応用することは,学術的にも社会的にも重要な課題である.本研究では,シンプルな数理モデルを用いることによって,感覚フィードバックにより多足生物で観測される多様な波を生成できることを示し,さらにこの原理を脚数に対して一般化することに成功した.また,生物の歩行戦略を理解してロボットの運動機能を向上させることも重要な課題であり,本研究では,特に後退波がもつ胴体運動に対する機能(振動抑制機能と速度向上)を数理モデルで明らかにした.
|