Development of heat-storage/heat-transfer control materials and its application to high-efficiency thermoelectric power generation systems
Project/Area Number |
18K13748
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21010:Power engineering-related
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Shiojiri Daishi 東京理科大学, 基礎工学部材料工学科, 助教 (30784235)
|
Project Period (FY) |
2018-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
|
Keywords | 熱制御材料 / 三酸化二チタン / 複合材料 / 金属絶縁体転移 / 電子・格子熱伝導率 / 熱伝導率 / 蓄熱 / 還元型酸化チタン / 伝熱 / 電子相転移 / 熱制御 / 熱電発電 |
Outline of Final Research Achievements |
In this study, we explored a material that can control the thermal conductivity and the heat storage function simultaneously and reversibly. The holding temperature and temperature rise/fall conditions during the plasma-activated sintering were optimized. This yielded a high-purity, dense reduced-type titanium oxide-based composite sintered body with a relative density of 95% or more Wx(Ti2O3)1-x (x ≦ 50 vol. %). Wx(Ti2O3)1-x exhibited a heat storage function owing to the metal-insulator transition (transition temperature: ~450 K). Similarly, the electronic thermal conductivity change and total thermal conductivity change value of this material are up to 6.06 and 6.34 times, respectively, compared with of the pure Ti2O3-sintered body. The total thermal conductivity change ratio prior and subsequent to the metal-insulator transition was 1.47 times, which would be promising as an automatic temperature-control mechanism in a highly efficient thermoelectric power generation system.
|
Academic Significance and Societal Importance of the Research Achievements |
持続可能な社会の実現に向けて、エネルギー構造改革が急務とされている。ユビキタス且つ膨大な熱エネルギーの更なる高効率利用のためには、熱を伝え・遮り・蓄え・利用するための材料基盤技術の確立と基礎的な知見の集積が求められている。本研究では、金属絶縁体転移により熱伝導率が変化し、潜熱蓄熱機能を有する熱機能材料の探索と高性能化がなされた。今後、本研究を他の電子相転移材料へ応用し、ドーピングや熱機能材料の複合化などの方法も組み合わせることで、エネルギー変換効率の上限がカルノー効率に支配される熱電発電システムへの応用だけでなく、熱を熱のまま高効率利用する新熱制御手法の開発と発展にも寄与できると考えている。
|
Report
(2 results)
Research Products
(2 results)