Project/Area Number |
18K13766
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21030:Measurement engineering-related
|
Research Institution | Doshisha University (2019) Nagoya Institute of Technology (2018) |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | 圧電デバイス / 酸化亜鉛薄膜 / 曲面成膜 / 弾性波 / 表面波 / 横波型 / 横波型弾性波 / 圧電薄膜 / 周回波 / 粘度センサ |
Outline of Final Research Achievements |
When a liquid contacts with a solid surface on which an acoustic wave is propagating, the acoustic-wave velocity and amplitude change due to the liquid characteristics such as a viscosity. Therefore, the characteristics of the liquid loaded onto the propagation path can be measured by the velocity and amplitude change. In this study, pipe structure sensors using shear horizontal (SH) acoustic wave roundtrips which leak little to the liquid were fabricated. First, the wave propagation simulation of c-axis parallel oriented ZnO film/silica glass substrate structure was performed. From the results, a pipe sensor with a diameter of 20 mm was prepared. The amplitude change due to the viscosity of the liquid was observed by the measurements of the wave propagation and liquid loading characteristics. Furthermore, the fabrication of a pipe sensor with a diameter of 6 mm was examined to miniaturize the pipe sensor.
|
Academic Significance and Societal Importance of the Research Achievements |
弾性波センサの感度は液体が接触した領域の長さで決まる。そのため、従来の平面上で直線的に弾性波を送受波するセンサに対し、パイプセンサではパイプ側面を弾性波が周回することで、小型でもセンサ領域の長い高感度なセンサを実現できる。さらに、パイプ内側にも伝搬する弾性波を用いると、パイプ内部の液体粘度を測定することができる。したがって、6mmパイプなど実験配管で広く利用される規格サイズのセンサを作製できれば、市販の石英パイプ用配管部品を使って液体流路にそのまま組み込める。また、石英ガラスパイプは耐久性、耐薬品性にも優れている。以上より、本研究のパイプセンサは新たな液体用センサとして期待できる。
|