Project/Area Number |
18K14036
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 26060:Metals production and resources production-related
|
Research Institution | Tohoku University (2019) Hokkaido University (2018) |
Principal Investigator |
Natsui Shungo 東北大学, 多元物質科学研究所, 助教 (70706879)
|
Project Period (FY) |
2018-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 高温融体 / コロイダルメタル / 溶融塩電解 / 電気化学 / 流体力学 / その場観察 / 高速顕微鏡観察 / 熱移動 |
Outline of Final Research Achievements |
We examined to trace the behavior of the molten high-temperature metal as a dispersed phase in detail in various systems. For the first time, here we reported the time change of electrode surface on the sub-millisecond/micrometre scale in molten LiCl-KCl-CaCl2 at 823 K in Ar atmosphere. When the potential was applied, liquid Ca-Li alloy droplets grew on the electrode, and the black colloidal metal moved on the electrode surface to form a network structure. The attraction, which operates on the interface between the different phases is explicitly defined as London dispersion force using the Fowkes theoretical model, and the interfacial tension can be calculated using the sum of the attraction magnitudes corresponding to the surrounding via computationa fluid dynamics simulation (SPH). These results will provide important information about the microscale mixing action near the electrode, and accelerate the development of metallothermic reduction of oxides.
|
Academic Significance and Societal Importance of the Research Achievements |
溶融塩(塩化物、酸化物など)中に分散する液体金属の挙動を知ることは、鉄、チタンなど多くの金属生産において共通、かつ経済的にも非常に重要です。高温溶融塩中の動的現象理解は容易ではありませんが、本研究では、電気化学的に制御された電極表面での高速顕微鏡による観察、電位・電流応答、流体力学解析など多角的な試みを実行し、様々な系でミリメートル以下かつミリ秒以下スケールでの考察を可能としました。特定の溶融塩中では、電析した合金液滴群の周囲にユニークな分散相ネットワーク構造が生成することを発見しました。界面の不均一性が生み出すセル状流れが、マイクロスケールでの混合を促進するかもしれません。
|