• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Hydrogen storage of Mg composite nanoparticles by controlling of the nano-interface

Research Project

Project/Area Number 18K14089
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 28030:Nanomaterials-related
Research InstitutionNagoya University

Principal Investigator

Ogawa Satoshi  名古屋大学, 工学研究科, 助教 (70739101)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Keywords水素吸蔵材料 / ナノ粒子 / XAFS / ガス中蒸発法 / マグネシウム / ナノ複合材料 / 表面・界面物性 / X線分光分析 / 透過型電子顕微鏡 / Mgナノ粒子 / ナノ界面
Outline of Final Research Achievements

In this study, Mg and the immiscible metals (Ti, Mn, etc…) are utilized and down-sized to nanometric scale for the efficient hydrogen storage. Mg is the most promising candidate of the base material for the hydrogen storage. The problem for the practical application is that the high temperature is required for the hydro-/dehydrogenation of Mg. The formation and decomposition enthalpies Mg hydride (MgH2) can be modulated by the hetero interface between Mg and the immiscible metals. Furthermore, the significant increase of the specific surface area by the down-sizing to nanometric scale improve the hydrogenation and dehydrogenation of MgH2. The bimetallic Mg-Mn nanoparticles were fabricated by the gas evaporation method and X-ray absorption fine structure (XAFS) measurements were carried out in order to investigate the interface between Mg and Mn.

Academic Significance and Societal Importance of the Research Achievements

再生可能エネルギーによる発電量は気候による変動を受けるため、電力を直接利用するのではなく一時的に水素などの化学エネルギーに変換及び貯蔵することで総合的なエネルギー効率が向上する。水素吸蔵材料は水素を安全かつコンパクトに貯蔵できる点で他の手法に対して優位性があり、中でもMgは安価な水素吸蔵材料として実用が期待されている。Mg系水素吸蔵材料の研究開発における最大の難点はその酸化のしやすさであり、本研究で対象にしているMg系ナノ粒子は低真空下でも酸化してしまう。これを解決するために、本研究では高真空下で試料作製からその評価までを可能にする実験系の整備を行い、その高い実用性を示した。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (5 results)

All 2022 2019

All Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Presentation] Mg-Mnナノ粒子の軟X線XAFS分析2022

    • Author(s)
      小川智史,八木伸也
    • Organizer
      日本金属学会2022年春期(第170回)講演大会
    • Related Report
      2021 Research-status Report
  • [Presentation] ガス中蒸発法で作製した金属ナノ粒子の水素吸蔵特性とX線分光分析2019

    • Author(s)
      小川智史,塚田千恵,八木伸也
    • Organizer
      日本金属学会2019年秋季講演大会
    • Related Report
      2019 Research-status Report
  • [Presentation] DFT calculations of electronic structure of Pd nanoparticles2019

    • Author(s)
      Satoshi Ogawa
    • Organizer
      PF研究会「X線分光理論の新展開:構造・電子状態解析から磁性研究まで」
    • Related Report
      2019 Research-status Report
  • [Presentation] 放射光X線分光で観るMg-Pdナノ粒子の水素吸蔵2019

    • Author(s)
      小川智史
    • Organizer
      産学協力研究委員会「材料中の水素機能解析技術第190委員会」令和元年第3回総会・講演会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] X-ray analysis of hydrogen storage nanoparticles2019

    • Author(s)
      Satoshi Ogawa, Chie Tsukada and Shinya Yagi
    • Organizer
      International Conference on Materials and Systems for Sustainability (ICMaSS 2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi