Project/Area Number |
18K14117
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 29010:Applied physical properties-related
|
Research Institution | The University of Tokyo (2019-2021) Institute of Physical and Chemical Research (2018) |
Principal Investigator |
Shibata Kiyou 東京大学, 生産技術研究所, 助教 (40780151)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 透過型電子顕微鏡 / 磁気ダイナミクス / マイクロマグネティックシミュレーション / 磁性体 / 電子線偏向 / 測定手法 / スピントロニクス / 電子線 |
Outline of Final Research Achievements |
As a method of analyzing the dynamics of magnetic structures, I proposed a method of observing changes in electron beam deflection over time in a scanning transmission electron microscope using a segmented annular all-field detector while the electron probe scanning is nearly stopped, and verified it both experimentally and by theoretical calculations. Experiments were performed on magnetite nanoparticles to estimate the accuracy of the observation by comparing the phase change induced by electrostatic potential with simulations. I also experimentally observed the related magnetic dynamics and searched for stable magnetic structures by micromagnetic simulation. As a result, useful knowledge was obtained for the development of methods for observing magnetic dynamics in the nanoscale region and for the search for new magnetic materials.
|
Academic Significance and Societal Importance of the Research Achievements |
実験的な電子線偏向の観察とシミュレーションとの比較による精度の見積もりなどにより、ナノスケール局所領域における磁気ダイナミクス観察手法開発に有用な知見が得られた。また、関連する磁気ダイナミクスの観察やマイクロマグネティックシミュレーションによる磁気構造の安定性の探索を通して、新たな磁気ダイナミクスや磁気構造の検討も行った。 将来的にこれらの知見をもとに局所領域の電子線偏向時間分解観測手法として確立できれば、局所的な高速磁気ダイナミクスの実空間観察に基づく基礎学理の構築や磁気デバイスの応用研究への貢献が期待できる。
|