One-pot conversion of glutamic acid to 2-pyrrolidone over solid catalysts
Project/Area Number |
18K14261
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 34030:Green sustainable chemistry and environmental chemistry-related
|
Research Institution | Tottori University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | アミノ酸 / 水素化 / 貴金属触媒 / バイオマス / 脱カルボニル / グルタミン酸 / プロリン / 2-ピロリドン / ルテニウム / ゼオライト / 担持Ru触媒 / 2-ピロリドン / 水素化反応 / ワンポット合成 |
Outline of Final Research Achievements |
Glutamic acid, an abundant nonessential amino acid, was converted into 2-pyrrolidone in the presence of a supported Ru catalyst under a pressurized hydrogen atmosphere. This reaction pathway proceeded through the dehydration of glutamic acid into pyroglutamic acid, subsequent hydrogenation, and the dehydrogenation-decarbonylation of pyroglutaminol into 2-pyrrolidone. In the conversion of pyroglutaminol, Ru/Al2O3 exhibited notably higher activity than supported Pt, Pd, and Rh catalysts. IR analysis revealed that Ru can hydrogenate the formed CO through dehydrogenation-decarbonylation of hydroxymethyl groups in pyroglutaminol and can also easily desorb CH4 from the active sites on Ru. Furthermore, Ru/Al2O3 showed the highest catalytic activity among the tested catalysts in the conversion of pyroglutamic acid. Consequently, the conversion of glutamic acid produced a high yield of 2-pyrrolidone by using the supported Ru catalyst.
|
Academic Significance and Societal Importance of the Research Achievements |
日本の発酵法によるアミノ酸の製造技術は世界トップレベルである.その技術により将来的にバイオマス資源からアミノ酸が安定して供給可能と見込まれる.よって,アミノ酸をサスティナブル化学品原料として利用する技術が構築されれば資源循環の実現に繋がる.本技術ではカルボニルを活性化する触媒を開発した.今後はさらに別のアミノ酸へ展開して,カルボン酸やアミノ基を水素化,脱炭酸,脱アミノ化させる反応を発展させていくことが望まれる.
|
Report
(4 results)
Research Products
(16 results)