Self-healing soft materials based on supramolecular interactions in ionic liquids
Project/Area Number |
18K14280
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 35020:Polymer materials-related
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
TAMATE Ryota 国立研究開発法人物質・材料研究機構, エネルギー・環境材料研究拠点, 独立研究者 (70812759)
|
Project Period (FY) |
2018-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | イオン液体 / イオンゲル / 自己修復 / 超分子相互作用 / ブロック共重合体 / 水素結合 / ナノ相分離 / ミセル / 高分子 / 超分子 |
Outline of Final Research Achievements |
We fabricated a self-healable ion gel by utilizing the hydrogen bonding between polymer chains in ionic liquids (ILs) as reversible crosslinking points. Furthermore, a new class of self-healing micellar ion gel composed of a diblock copolymer and an IL was presented. The diblock copolymer has an IL-phobic block and a hydrogen-bonding block. By combining the IL and the diblock copolymer, micellar ion gels were prepared in which the IL phobic blocks formed a jammed micelle core, whereas coronal chains interacted with each other via multiple hydrogen bonds. These hydrogen bonds between the coronal chains endowed the ion gel with a high level of mechanical strength as well as rapid self-healing. In addition, the effect of IL structures on the microstructures and viscoelastic properties of the micellar ion gel was investigated. It was clarified that competition among cations, anions, and polymer chains for hydrogen bonding significantly affected the viscoelastic behavior of the ion gel.
|
Academic Significance and Societal Importance of the Research Achievements |
カチオン・アニオンのみからなる常温溶融塩であるイオン液体を溶媒とするゲル(イオンゲル)は安全性・安定性の高いソフトな固体電解質であり、次世代電気化学デバイスへの応用が検討されている。本研究ではイオン液体中における高分子間の可逆相互作用とナノ相分離構造を利用することで、高強度かつ自己修復性を持つイオンゲルを初めて創製した。イオンゲルに自己修復性を付与することで伸縮や曲げに対する耐久性を大きく向上できると期待される。IoT時代においてウェアラブル・ストレッチャブル技術への需要は高まっており、本研究の成果は安心・安全で高耐久なゲル電解質としてウェアラブル機器への応用などが大きく期待される。
|
Report
(3 results)
Research Products
(29 results)