Project/Area Number |
18K14302
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 35030:Organic functional materials-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Higahino Toshiki 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 研究員 (30761324)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 有機トランジスタ / 有機半導体 / 層状結晶性 / 結晶構造制御 / π拡張 / 置換基効果 / 構造多様性 / 自己組織化単分子膜 / 結晶構造 / 非共有結合性相互作用 |
Outline of Final Research Achievements |
A significant and essential requirement for achieving high-performance organic thin-film transistors (TFTs) is that the material should have high layered crystallinity. The origin of the high layered crystallinity in the bilayer-type layered herringbone (b-LHB) packing has been clarified by the reliable crystal structure analysis of a unsymmetric rod-like molecule. Some “non-layered” and “antiparallel-stacked”π-electron cores have been proved to acquire the layered crystallinity by introducing the adequate unsymmetric substitutions. The resulting molecules show record-high carrier mobility in solution-processed TFTs. Also, the formation of mixed self-assembled monolayers (SAMs) provides finely tunable surface wettability within the range of those for the single-component SAMs. This feature is quite effective for realizing the optimal solution-coating conditions for organic semiconductor inks, leading to improved TFT properties.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究課題は,これまで見過ごされてきた多くのパイ電子骨格を高性能な半導体材料として蘇らせる強力な結晶工学的手法を実証するものであり,有機エレクトロニクス材料基盤の開発をさらに加速化させることが見込まれる.特に,非対称パイ電子骨格への非対称置換は,有機合成化学的にもこれまで充分に検討されておらず,分子の自己組織化能を著しく変化させることから,有機結晶化学および構造有機化学的にも興味深い.また,印刷下地層の表面濡れ性を自在に制御する技術は,プリンテッドエレクトロニクス技術基盤に関わるデバイス・プロセス開発を加速化させ,デバイスの高度化や製造工程の簡略化・低コスト化につながるがことが期待される.
|