Synthesis of the novel solid electrolytes based on the Li-free solid solvent
Project/Area Number |
18K14319
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
Miyazaki Reona 名古屋工業大学, 工学(系)研究科(研究院), 助教 (10756191)
|
Project Period (FY) |
2018-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | 固体電解質 / ゲストLi+伝導体 / Liフリー化合物 / NaI / LiBH4 / 全固体Li電池 / ゲストLi+ / 固体溶媒 / Li-free / 全固体電池 |
Outline of Final Research Achievements |
For the high performance all-solid-state Li batteries (LIBs), we focused on the guest Li+ ions which are doped in the crystal lattice of Li-free compounds and fabricated novel guest Li+ conductors. In this work, we have reported that NaBr forms solid solution with LiBH4 and becomes a guest Li+ conductor with higher electrochemical stability compared to NaI. Li+ conductivity in NaI was improved by controlling Li+ and BH4- concentrations and reached to be 10μS/cm at room temperature. All-solid-state LIB of Li/TiS2 was fabricated using NaI-NaBH4-LiI as the solid electrolyte. The stable charge-discharge cycles were confirmed, which is the first example of the all-solid-state LIB using guest Li+ conductor. Furthermore, we proposed cryo-milling as a novel fabrication method of meta-stable phase. Wurtzite LiI was stabilized by doping LiBH4 via cryo-milling at 213 K. It was considered that cryo-milling is a powerful tool for synthesizing new phases which can include new guest Li+ conductors.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、NaI結晶中で10μS/cmのゲストLi+伝導度を達成した。一方でNa+伝導はLi+伝導と比べ無視できる程度であった。従来は、Li+とNa+が結晶内に共存するとLi+伝導度は低下するとされてきたが、NaI中ではゲストLi+の高速伝導が確認された。この結果は、ゲストLi+は従来と異なる機構で伝導することを意味しており、特に混合アルカリ系における新たなイオン伝導機構を見出せる可能性が示唆された。また本研究では、ゲストLi+伝導体を用いた全固体電池の動作を実証できた。これはゲストLi+伝導体が、全固体電池実現に向けた固体電解質開発の新たな切り口となることを示唆する、重要な成果である。
|
Report
(3 results)
Research Products
(34 results)