Molecular biology of bacterial chalcogen metabolism and the application to semiconductor nanoparticle production
Project/Area Number |
18K14373
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 38020:Applied microbiology-related
|
Research Institution | Tokoha University (2020) Osaka University (2018-2019) |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | セレン / テルル / カルコゲン / 半導体ナノ粒子 / 代謝物分析 / バイオプロダクション |
Outline of Final Research Achievements |
Biosynthesis of chalcogenide semiconductor (ChSC) nanoparticles is a promising technology due to its low environmental burden. This study investigated selenium and tellurium metabolism of ChSC nanoparticle-synthesizing bacterium, Pseudomonas stutzeri NT-I. Culture medium supplemented with over 1 g/L methionine significantly improved the selenium metabolism of strain NT-I. Selenomethionine was detected in a cell lysate of strain NT-I under selenite-reducing condition. These result strongly suggested that selenium metabolism was closely related to selenoamino acid synthetic pathway. Methylated tellurium compounds, which are analogous to selenium metabolites, were detected in the gas phase of tellurium-reducing culture of strain NT-I, suggesting that tellurium metabolism is also related to amino acid synthetic pathway.
|
Academic Significance and Societal Importance of the Research Achievements |
様々な先端産業で利用されるセレンやテルルを含む半導体ナノ粒子を、微生物を利用して効率的に合成するための基礎として、半導体ナノ粒子合成細菌NT-I株のセレン・テルル代謝を調べた。その結果、NT-I株はセレンおよびテルルを、アミノ酸合成経路を通じて代謝していることが明らかになった。また、メチオニンの添加によりセレン代謝を促進できることを見出した。この成果は、これまでに非常に報告が少ないセレン・テルルを含む半導体ナノ粒子の微生物による合成の実現に大きく近づく発見である。
|
Report
(4 results)
Research Products
(18 results)