Analysis of transcriptional regulation mechanisms and artificial modification of DNA structure by CRISPR/Cas system.
Project/Area Number |
18K15045
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 48040:Medical biochemistry-related
|
Research Institution | Gifu University |
Principal Investigator |
Sato Katsuya 岐阜大学, 大学院医学系研究科, 助教 (60733508)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | AID / CRISPR/Cas9 / 遺伝子発現制御 / Aicda / 遺伝子転写調節 / 転写調節 / エンハンサー / dCas9 |
Outline of Final Research Achievements |
Activation-induced cytidine deaminase (AID), which encoded by Aicda, is essential for class switch recombination (CSR) and somatic hypermutation (SHM). Although the expression of AID is tightly regulated and restricted in activated B cells, it is thought that aberrant expression of AID can be involved in tumor progression because of its high mutagenetic potential. Many transcription factors have been identified as regulators of Aicda. These factors should coordinately regulate Aicda, but the detailed mechanisms are not fully understood. IRF4, one of the essential factors for AID expression, forms a complex with multiple transcription factors such as PU.1 and Batf. We identified that IRF4-Batf-Jun complex are more important than IRF4-PU.1 complex for AID expression. Also, we tried to analyze 3D structure of Aicda locus by dCas9 fused with transcription activated protein or Luciferase protein. Furthermore, we tried to reconstitute activated Aicda locus by dCas9 system.
|
Academic Significance and Societal Importance of the Research Achievements |
近年、従来着目されてきた転写因子とDNAの単純な相互作用による転写調節に加え、遺伝子座全体の構造や、核内においてDNAの存在する区画によって転写が活発な領域とそうでない領域に分けられるという考え方が受け入れられつつある。しかしながらこれらを知る為には3C法やHi-C法といった煩雑な解析が必要であった。今後改善が必要であるものの、本研究で検討したdCas9を用いることでより簡便に遺伝子座の構造解析を行えるようになると考えられる。また、こうして得られた知見をもとにDNA構造を改変することでAID発現の調節が出来れば、将来的に自己免疫疾患の克服や効率的なワクチン開発といった分野への応用が期待できる。
|
Report
(4 results)
Research Products
(13 results)