Project/Area Number |
18K15271
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 50020:Tumor diagnostics and therapeutics-related
|
Research Institution | Shinshu University |
Principal Investigator |
koga hiroshi 信州大学, 学術研究院医学系(医学部附属病院), 講師 (30419361)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 爪甲色素線条 / 人工知能 / メラノーマ / ダーモスコピー / 爪部メラノーマ / 深層学習 |
Outline of Final Research Achievements |
Dermoscopy photographs of melanonychia visited at the outpatient clinic of Shinshu University Hospital between 2007 and 2020 were used as samples. Clinical information for each case was investigated and data cleaning was performed, followed by correct labeling or annotation for each case image. The image population was divided into training, validation, and verification datasets. The training image dataset was used to create an initial classifier using a general-purpose deep learning tool. We evaluated the classification performance on the validation data.
|
Academic Significance and Societal Importance of the Research Achievements |
希少疾患である爪部メラノーマの初期症状である爪甲色素線条を、その他の原因で生じる爪甲色素線条と臨床的に区別するための補助となるプログラムを作成した。既に海外で報告されているAIプログラムの性能を上回ることができたが、それは主に組み入れ対象の調整による影響が大きいと考えられた。希少疾患のAI作成では学習データ不足が問題となり、全国的なデータ収集体制とともにAI分類機作成にあたっての技術的な工夫が必要である。
|