• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of technology to predict and track the position and shape of luminal organs using artificial intelligence

Research Project

Project/Area Number 18K15535
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionHokkaido University

Principal Investigator

Nishioka Kentaro  北海道大学, 医学研究院, 助教 (80463743)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords人工知能 / セグメンテーション / 適合放射線治療 / 機械学習 / 膀胱癌 / 放射線治療 / 画像認識 / 深層学習 / 陽子線治療 / ディープラーニング / 医学物理(学)
Outline of Final Research Achievements

When radiotherapy is applied to luminal organs whose position and shape change from day to day, the status of target organ may not match between at the time of treatment planning and the actual time of treatment. In order to realize the optimized radiotherapy according to the position and shape of the target in the daily treatment, this study carried out to develop the technology which enable us to predict and track the position and shape of the organ using artificial intelligence. After machine learning using previously acquired MRI images of 100 patients as teacher data, artificial intelligence successfully delineated the bladder contour with a mean Dice coefficient index of 94.4%.

Academic Significance and Societal Importance of the Research Achievements

MRIは放射線被曝なしに画像情報を取得できるため、日々の放射線治療時の臓器の位置や形状を取得する手法として最適である。本研究で、人工知能の機械学習によりMRI画像上で日々の膀胱の位置・形状を高精度に取得できることが示された。この技術は他の管腔臓器においても利用可能であり、MRI撮像機能を搭載した放射線治療装置が既に開発されていることから、本研究はMRIを用いて日々の臓器の位置・形状に最適化した放射線治療(すなわち適合放射線治療)を実現するための礎になる。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2020 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] The urethral position may shift due to urethral catheter placement in the treatment planning for prostate radiation therapy2019

    • Author(s)
      Dekura Yasuhiro、Nishioka Kentaro、Hashimoto Takayuki、Miyamoto Naoki、Suzuki Ryusuke、Yoshimura Takaaki、Matsumoto Ryuji、Osawa Takahiro、Abe Takashige、Ito Yoichi M.、Shinohara Nobuo、Shirato Hiroki、Shimizu Shinichi
    • Journal Title

      Radiation Oncology

      Volume: 14 Issue: 1 Pages: 226-226

    • DOI

      10.1186/s13014-019-1424-8

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Automatic bladder delineation on MR images using a convolution neural network for online image-guided radiotherapy2020

    • Author(s)
      Kentaro Nishioka, Yusuke Nomura, Takayuki Hashimoto, Rumiko Kinoshita, Norio Katoh, Hiroshi Taguchi, Koichi Yasuda, Takashi Mori, Yusuke Uchinami, Manami Otsuka, Taeko Matsuura, Seishin Takao, Ryusuke Suzuki, Sodai Tanaka, Takaaki Yoshimura, Hidefumi Aoyama, Shinichi Shimizu
    • Organizer
      62nd ASTRO Annual meeting
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 進行期前立腺癌に対する根治的IMRTの初期経験2019

    • Author(s)
      西岡 健太郎、橋本 孝之、森 崇、長江 伸樹、木下 留美子、安部 崇重、大澤 崇宏、松本 隆児、篠原 信雄、白土 博樹1、清水 伸一
    • Organizer
      日本放射線腫瘍学会第32回学術大会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi