• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of estimation system of dosimetric QA for volumetric modulated arc therapy

Research Project

Project/Area Number 18K15545
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionKyoto University

Principal Investigator

Ono Tomohiro  京都大学, 医学研究科, 特定助教 (90782657)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
KeywordsVMAT / 機械学習 / 最適化 / QA予測 / dosiomics / QA結果予測 / 回帰木 / 重回帰分析 / ニューラルネットワーク / 医学物理学 / 強度変調放射線治療 / QA
Outline of Final Research Achievements

QA result prediction was developed for VMAT using machine learning and the system was structed. In accordance with the research protocol, following three research were performed; “1. Analysis of features of plan information”, “2. Development of QA result prediction model via machine learning” and “3. Prospective evaluation of prediction model accuracy and structing the system”.
The model was constructed using more than 1000 actual clinical cases in our hospital, and it was found that the prediction accuracy could be improved by combining the information on plan and dose information.

Academic Significance and Societal Importance of the Research Achievements

本研究成果により、高精度放射線治療の品質管理の新たな手法として学術論文誌に報告を行い、高い評価を得た。患者プランのQA結果の予測を可能とするため、新たなQA手法としての確立に貢献するものと考える。また本手法を用いることで高精度放射線治療プランの立案段階で予めQA結果の予測が可能となるため、照射プラン形成へのフィードバックへの応用も期待される。本手法により治療計画の効率化、さらには患者へのより良い照射プランの提供が可能となると考えられ、学術的・社会的にも意義がある。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (7 results)

All 2020 2019 2018

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Improvement of prediction and classification performance for gamma passing rate by using plan complexity and dosiomics features2020

    • Author(s)
      Hirashima Hideaki、Ono Tomohiro、Nakamura Mitsuhiro、Miyabe Yuki、Mukumoto Nobutaka、Iramina Hiraku、Mizowaki Takashi
    • Journal Title

      Radiotherapy and Oncology

      Volume: 153 Pages: 250-257

    • DOI

      10.1016/j.radonc.2020.07.031

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Independent calculation‐based verification of volumetric‐modulated arc therapy?stereotactic body radiotherapy plans for lung cancer2020

    • Author(s)
      Ono Tomohiro、Mitsuyoshi Takamasa、Shintani Takashi、Tsuruta Yusuke、Iramina Hiraku、Hirashima Hideaki、Miyabe Yuki、Nakamura Mitsuhiro、Matsuo Yukinori、Mizowaki Takashi
    • Journal Title

      Journal of Applied Clinical Medical Physics

      Volume: 21 Issue: 7 Pages: 135-143

    • DOI

      10.1002/acm2.12900

    • NAID

      120006940300

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Prediction of dosimetric accuracy for VMAT plans using plan complexity parameters via machine learning2019

    • Author(s)
      Ono Tomohiro、Hirashima Hideaki、Iramina Hiraku、Mukumoto Nobutaka、Miyabe Yuki、Nakamura Mitsuhiro、Mizowaki Takashi
    • Journal Title

      Medical Physics

      Volume: 46 Issue: 9 Pages: 3823-3832

    • DOI

      10.1002/mp.13669

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] VMATに対するplan complexity軽減アルゴリズムの開発2020

    • Author(s)
      小野智博、平島英明、宮部結城、中村光宏、溝脇尚志
    • Organizer
      日本放射線腫瘍学会第33回学術大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Dose-based radiomics特徴量を用いた強度変調放射線治療におけるガンマパス率の予測2019

    • Author(s)
      平島 英明,小野 智博,中村 光宏,宮部 結城,椋本 宜学,伊良皆 拓,溝脇 尚志
    • Organizer
      日本放射線腫瘍学会第32回学術大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Estimation of dosimetric accuracy for VMAT plans using statistical learning2018

    • Author(s)
      Tomohiro Ono, Hideaki Hirashima, Hiraku Iramina, Nobutaka Mukumoto, Yuki Miyabe, Mitsuhiro Nakamura, Takashi Mizowaki
    • Organizer
      The 3rd FARO Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 統計的学習を用いた強度変調回転照射の治療計画精度推定2018

    • Author(s)
      小野智博、平島英明、伊良皆拓、椋本宜学、宮部結城、中村光宏、溝脇高志
    • Organizer
      日本放射線腫瘍学会第31回学術大会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi