• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a fine tuning model of radiology with deep learning

Research Project

Project/Area Number 18K15597
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionOsaka City University

Principal Investigator

Tsutsumi Shinichi  大阪市立大学, 健康科学イノベーションセンター, 特別研究員 (60647866)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2020: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2019: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2018: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Keywords人工知能 / AI / 乳癌 / マンモグラフィ / 説明可能なAI / 可視化 / 病理 / 深層学習 / Deep Learning / コンピュータ支援診断 / 機械学習
Outline of Final Research Achievements

We are pleased to present the results of a study in which pathological classification of breast cancer, which is usually determined by invasive pathological methods, could be performed based solely on mammograms. This is the greatest achievement because it was created using a large amount of mammography data in the context of this project funded by this KAKENHI.

Academic Significance and Societal Importance of the Research Achievements

今回の研究は、AIの判断根拠を可視化することで、AIを説明に挑戦した。この点ではAIと医師の架け橋となりうるような研究である。また、このモデルはGitHub上でオープンソース(https://github.com/ pathology-mammography)で公開しており、すべての研究者が本モデルを参考することができ、比較やさらなる発展を望むことができる。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2022 2020

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (2 results) (of which Invited: 2 results)

  • [Journal Article] Visualizing “featureless” regions on mammograms classified as invasive ductal carcinomas by a deep learning algorithm: the promise of AI support in radiology2020

    • Author(s)
      Ueda Daiju、Yamamoto Akira、Takashima Tsutomu、Onoda Naoyoshi、Noda Satoru、Kashiwagi Shinichiro、Morisaki Tamami、Tsutsumi Shinichi、Honjo Takashi、Shimazaki Akitoshi、Goto Takuya、Miki Yukio
    • Journal Title

      Japanese Journal of Radiology

      Volume: 39 Issue: 4 Pages: 333-340

    • DOI

      10.1007/s11604-020-01070-9

    • NAID

      210000161498

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] マンモグラフィへのAIの応用2022

    • Author(s)
      植田大樹
    • Organizer
      Breast Cancer Web Seminar
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] マンモグラフィへのAIの応用2022

    • Author(s)
      植田大樹
    • Organizer
      第31回日本乳癌画像研究会
    • Related Report
      2021 Annual Research Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi