• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of In-Hospital Emergency System and Early Warning Score in Japan

Research Project

Project/Area Number 18K16548
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 55060:Emergency medicine-related
Research InstitutionSt. Marianna University School of Medicine

Principal Investigator

Naito Takaki  聖マリアンナ医科大学, 医学部, 助教 (30814628)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords早期傾向スコア / 機械学習 / Rapid Response System / 院内心停止 / 院内急変 / 早期警告スコア / Rapid response system / NEWS / Machine learning / rapid response system / cardiac arrest / in-hospital emergency / rapid response team / medical emergency team / 院内救急 / RRS
Outline of Final Research Achievements

To clarify the in-hospital emergency response system in our country, we integrated the Rapid Response System (RRS) registry and the In-Hospital Cardiac Arrest registry, aligning them with the American Heart Association's registry definitions. We analyzed data from each facility and provided feedback to facility representatives, comparing their data with national data. The registry data analysis revealed that early warning scores are also useful for risk stratification in our country, suggesting that this could be a solution to the current low RRS activation rate. Additionally, we developed a prognostic model for post-RRS activation using machine learning, specific to our country. This new machine learning model demonstrated superior predictive accuracy for mortality or unexpected ICU transfer within 24 hours compared to existing early warning scores.

Academic Significance and Societal Importance of the Research Achievements

院内救急体制の現状を把握するための世界標準のレジストリ整備がされた。またそのデータを元にフィードバックを行っており、各施設の院内救急体制の発展への貢献が期待される。レジストリデータを用いた解析により早期警告スコアが我が国でも有用である可能性を示した。これにより早期警告スコアの導入によるRapid Response System(RRS)起動率増加、院内心停止の予防が期待される。機械学習を用いたRRS起動後の短期予後予測モデルを開発することにより、RRSによる介入の質を改善が期待される。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (13 results)

All 2024 2023 2021 2020 2019

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (11 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Validation of National Early Warning Score for predicting 30‐day mortality after rapid response system activation in Japan2021

    • Author(s)
      Naito Takaki, Hayashi Kuniyoshi, Hsu Hsiang‐Chin, Aoki Kazuhiro, Nagata Kazuma, Arai Masayasu, Nakada Taka‐aki, Suzaki Shinichiro, Hayashi Yoshiro, Fujitani Shigeki, In‐Hospital Emergency Study Group
    • Journal Title

      Acute Medicine & Surgery

      Volume: 8 Issue: 1 Pages: 1-9

    • DOI

      10.1002/ams2.666

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] First report based on the online registry of a Japanese multicenter rapid response system: a descriptive study of 35 institutions in Japan2019

    • Author(s)
      Naito Takaki, Fujiwara Shinsuke, Kawasaki Tatsuya, Sento Yoshiki, Nakada Taka‐aki, Arai Masayasu, Atagi Kazuaki, Fujitani Shigeki, In‐Hospital Emergency Study Group
    • Journal Title

      Acute Medicine & Surgery

      Volume: 7 Issue: 1

    • DOI

      10.1002/ams2.454

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Rapid Response System起動後の短期予後を予測する機械学習モデルの開発2024

    • Author(s)
      内藤貴基, 藤谷茂樹
    • Organizer
      第51回日本集中治療医学会学術集会
    • Related Report
      2023 Annual Research Report
  • [Presentation] A machine learning model for predicting short-term outcomes after rapid response system activation2023

    • Author(s)
      Naito T, M. Li, Fujitani S
    • Organizer
      36th ESICM Annual Congress
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] レジストリからみた我が国のrapid response systemの現状2021

    • Author(s)
      内藤貴基, 藤谷茂樹, In-Hospital Emergency Study Group
    • Organizer
      第48回日本集中治療医学会学術総会
    • Related Report
      2020 Research-status Report
  • [Presentation] 効果のあるRRSのための条件についての文献的考察2021

    • Author(s)
      内藤貴基
    • Organizer
      第48回日本集中治療医学会学術総会
    • Related Report
      2020 Research-status Report
  • [Presentation] RRS の介入を必要とした術後患者の解析2021

    • Author(s)
      仙頭佳起, 新井正康, 山森祐治, 藤原紳祐, 玉城正弘, 川本英嗣, 内藤貴基, 安宅一晃, 藤谷茂樹, 大佐賀智, 祖父江和哉, In-Hospital Emergency Study Group
    • Organizer
      第48回日本集中治療医学会学術総会
    • Related Report
      2020 Research-status Report
  • [Presentation] 病院規模・RRS要請頻度と患者転帰の関連2021

    • Author(s)
      栗田健郎, 中田孝明, 内藤貴基, 安宅一晃, 藤谷茂樹, IHER-J collaborators
    • Organizer
      第48回日本集中治療医学会学術総会
    • Related Report
      2020 Research-status Report
  • [Presentation] Validation of National Early Warning Score and New Simpler Predicting Model in Japanese Population2020

    • Author(s)
      Takaki Naito, Kuniyoshi Hayashi, Hsiang-Chin Hsu, Kazuhiro Aoki, Kazuma Nagata, Taka-aki Nakata, Masayasu Arai, Shigeki Fujitani
    • Organizer
      49th Critical Care Congress
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Rapid Response Systemオンラインレジストリからわかった現状とこれから2020

    • Author(s)
      内藤貴基, 藤原紳祐, 川崎達也, 仙頭佳起, 中田孝明, 新井正康, 安宅一晃, 藤谷茂樹, In-Hospital Emergency study Group
    • Organizer
      第47回日本集中治療医学会学術集会
    • Related Report
      2019 Research-status Report
  • [Presentation] 入院患者の病状変化を見逃さないための早期警告スコアの自動化と活用について2020

    • Author(s)
      内藤貴基, 谷井梨美, 児玉京子, 小波本直也, 斉藤岳史, 小原秀樹, 藤野雄大, 吉田徹, 藤谷茂樹
    • Organizer
      第47回日本集中治療医学会学術集会
    • Related Report
      2019 Research-status Report
  • [Presentation] Effectiveness of Early Warning Score for Predicting the Risk of In-Hospital Cardiac Arrest in Japan. -A Pilot Study-2019

    • Author(s)
      Takaki Naito, Yosuke Homma, Rimi Tanii, Kyoko Kodama, Yasuhiko Taira, Shigeki Fujitani
    • Organizer
      iSRRS 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 早期警告スコアで予期せぬ心停止に対する感度の検討 パイロットスタディ2019

    • Author(s)
      内藤貴基
    • Organizer
      第46回日本集中治療医学会学術集会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi