• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Automated diagnosis of Sjogren's syndrome using artificial intelligence and prediction of treatment selection and treatment efficacy

Research Project

Project/Area Number 18K17184
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 57060:Surgical dentistry-related
Research InstitutionAichi Gakuin University

Principal Investigator

Kise Yoshitaka  愛知学院大学, 歯学部, 講師 (30513197)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
KeywordsDeep Learning / シェーグレン症候群 / Deep learning
Outline of Final Research Achievements

CT images of the parotid gland and ultrasound (US) images of the parotid and submandibular glands of patients with Sjogren's syndrome and healthy subjects were used to validate the diagnostic accuracy of the artificial intelligence (AI). The results showed that the diagnostic accuracy of both CT and US images was higher than that of inexperienced radiologists and comparable to that of experienced radiologists. Therefore, the diagnostic accuracy of CT and US images of Sjogren's syndrome by AI could support radiologists in their diagnosis. We further investigated the accuracy of AI in classifying three types of US images of patients with Sjogren's syndrome, healthy subjects and patients with inflammatory complications due to sialolithiasis, and found that the results were comparable to those of experienced radiologists.

Academic Significance and Societal Importance of the Research Achievements

シェーグレン症候群は、確定診断のため特殊な検査が必要であることと、進行が緩慢であるため患者自身が自覚するのに時間がかかるため早期発見が困難な病気である。本研究では、CT・超音波検査画像を人工知能で診断させ精度の高い診断性能を示した。従って、シェーグレン症候群のスクリーニングが可能となり早期発見へと繋がることが期待できる。
最新技術である人工知能の精度の検証および患者への応用の可能性があることから、学術的意義および社会的意義は大きいと考えられる。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (9 results)

All 2024 2021 2020 2019 2018

All Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (5 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Does ultrasound elastography have a role as a diagnostic method for Sj?gren’s syndrome in the salivary glands? A systematic review2024

    • Author(s)
      Kise Yoshitaka、Moystad Anne、Kuwada Chiaki、Ariji Eiichiro、Bjornland Tore
    • Journal Title

      Oral Radiology

      Volume: 40 Issue: 3 Pages: 329-341

    • DOI

      10.1007/s11282-024-00740-y

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Preliminary Study on the Diagnostic Performance of a Deep Learning System for Submandibular Gland Inflammation Using Ultrasonography Images.2021

    • Author(s)
      Kise Y, Kuwada C, Ariji Y, Naitoh M, Ariji E.
    • Journal Title

      J Clin Med

      Volume: 10(19) Issue: 19 Pages: 4508-4508

    • DOI

      10.3390/jcm10194508

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Usefulness of a deep learning system for diagnosing Sjogren's syndrome using ultrasonography images.2020

    • Author(s)
      3.Kise Y, Shimizu M, Ikeda H, Fujii T, Kuwada C, Nishiyama M, Funakoshi T, Ariji Y, Fujita H, Katsumata A, Yoshiura K, Ariji E.
    • Journal Title

      Dentomaxillofac Radiol

      Volume: 49(3) Issue: 3 Pages: 20190348-20190348

    • DOI

      10.1259/dmfr.20190348

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Preliminary study on the application of deep learning system to diagnosis of Sjogren’s syndrome on CT images2019

    • Author(s)
      Kise Yoshitaka、Ikeda Haruka、Fujii Takeshi、Fukuda Motoki、Ariji Yoshiko、Fujita Hiroshi、Katsumata Akitoshi、Ariji Eiichiro
    • Journal Title

      Dentomaxillofacial Radiology

      Volume: 48 Issue: 6 Pages: 20190019-20190019

    • DOI

      10.1259/dmfr.20190019

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] 深層学習システムによる顎下腺炎の超音波画像の診断精度2021

    • Author(s)
      木瀬 祥貴、桒田 千亜紀、有地 淑子、内藤 宗孝、福田 元気、西山 雅子、船越 拓磨、有地 榮一郎
    • Organizer
      日本歯科放射線学会 第2回秋季学術大会
    • Related Report
      2021 Research-status Report
  • [Presentation] Diagnostic value of deep learning for classifying Sjogren’s syndrome on computed tomographic images2019

    • Author(s)
      Yoshitaka Kise, Haruka Ikeda, Takeshi Fujii, Motoki Fukuda, Yoshiko Ariji, Eiichiro Ariji
    • Organizer
      IADR/AADR/CADR General Session & Exhibition
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Deep Learningによるシェーグレン症候群のCT画像診断の精度2018

    • Author(s)
      木瀬祥貴、藤井武、池田陽香、有地淑子、福田元気、有地榮一郎
    • Organizer
      日本歯科放射線学会第59回学術大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Deep Learningを用いたシェーグレン症候群のCT画像診断の精度2018

    • Author(s)
      木瀬祥貴、池田陽香、藤井武、福田元気、有地淑子、有地榮一郎
    • Organizer
      第61回日本口腔科学会中部地方部会
    • Related Report
      2018 Research-status Report
  • [Presentation] Diagnostic value of deep learning for classifying Sjogren’s syndrome on CT images2018

    • Author(s)
      Yoshitaka Kise, Haruka Ikeda, Takeshi Fujii, Yoshiko Ariji, Eiichiro Ariji
    • Organizer
      12th Asian Congress of Oral & Maxillofacial Radiology
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi