• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Accuracy evaluation of predicted disease state transition by Markov model and its application to cost-effectiveness analysis

Research Project

Project/Area Number 18K17381
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 58030:Hygiene and public health-related: excluding laboratory approach
Research InstitutionHiroshima University

Principal Investigator

Akita Tomoyuki  広島大学, 医系科学研究科(医), 講師 (80609925)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsマルコフモデル / 推定精度 / 費用効果分析 / 漸近論 / 精度 / 信頼区間 / 分散安定化 / シミュレーション / カプランマイヤー法
Outline of Final Research Achievements

Markov model is used to estimate the disease progression and cost-effectiveness analysis. This model predicts future pathological progression based on the "transition probability" calculated by data from epidemiological/clinical research data, but so far. few studies examined that the number of data from the original research has affected the prediction accuracy.
In this study, we have developed a formula to evaluate the prediction accuracy by Markov model in the "confidence interval". Next, a numerical simulation was performed to examine the number of data and the accuracy of the confidence interval (covering probability). It was also compared with the existing formula confidence intervals in a special case of the Markov model (two states irreversible). Furthermore, based on this formula, the estimation accuracy of cost and effect in concrete cost-effectiveness analysis was examined.

Academic Significance and Societal Importance of the Research Achievements

検診・治療等の疾病対策導入を検討するとき、検診を導入した/導入しなかった場合の、生涯にかかる費用とQOLをそれぞれ見積り、導入に要した費用に似合うだけのQOL改善が見込まれるのかが評価されている。方法の一つであるマルコフモデルは、実際の疫学・臨床研究のデータから、1年間の疾患の発症率や進行率を出して、それをもとに仮想的に病態進行をシミュレーションを行う。元のデータの対象者数が少ない場合、予測の精度がよくないと考えられるが、これまでの研究では、ほとんど考慮されていない。そこで本研究では、予測の精度を「信頼区間」として表現するための公式を開発し、その方法の妥当性を理論と実用の両面から検討した。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2021 2018

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (1 results)

  • [Journal Article] Long-term natural history of liver disease in patients with chronic hepatitis B virus infection: an analysis using the Markov chain model2018

    • Author(s)
      Tada T, Kumada T, Toyoda H, Ohisa M, Akita T, Tanaka J
    • Journal Title

      Journal of Gastroenterology

      Volume: 53 Pages: 1196-205

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Natural course of persistent hepatitis B virus infection in HBe antigen-positive and -negative cohorts in Japan based on the Markov model2018

    • Author(s)
      Yamasaki K, Tanaka J, Kurisu A, Akita T, Ohisa M, Sakamune K, Ko K, Sugiyama A, Yasaka T, Shirahama S
    • Journal Title

      Journal of Medical Virology

      Volume: 90 Pages: 1800-13

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] MarkovモデルとAge-Cohortモデルによる献血の需要と供給の将来推計の試み2021

    • Author(s)
      秋田智之、杉山文、今田寛人、栗栖あけみ、田中純子
    • Organizer
      第31回日本疫学会学術総会
    • Related Report
      2020 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi