• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A unified model of motor learning based on a unified framework of motor control and learning

Research Project

Project/Area Number 18K17894
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 59030:Physical education, and physical and health education-related
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

Takiyama Ken  東京農工大学, 工学(系)研究科(研究院), 准教授 (40725933)

Project Period (FY) 2018-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Keywords身体運動制御 / 身体運動学習 / データ駆動型身体運動科学 / 機械学習 / 運動制御 / 運動学習 / 数理モデル
Outline of Final Research Achievements

We proposed a data-driven method to detect the relationships of time-varying and multi-joint motion data to motion outcome data (Furuki & Takiyama, 2019, 2020, Takiyama+, 2020). Conventional studies focused on either time-varying and multi-joint motion data or motion outcome data. It thus remains unclear how to quantify the relationships between time-varying and multi-joint motion data and motion outcome data. We not only proposed a data-driven method to quantify the unclear relationship but applies to motor learning situations. Our method succeeded in quantifying the modulations of time-varying and multi-joint motion data during motor learning processes. In addition, we clarified novel features of motor learning via our methods.

Academic Significance and Societal Importance of the Research Achievements

昨今、スマートフォンなどで撮影した動画を利用した、ヒトの身体運動計測技術の発展が目覚ましい。すなわち、近い将来、自らの身体運動をいつでもどこでも計測する未来がすぐそこまで迫ってきている。計測技術の進展は目覚ましい一方、身体運動の解析方法の進展速度は遅いと言わざるを得ない。特に、動画から抽出した身体運動データを解析する技術は数少なかった。本研究では、どのような身体運動データに対しても利用可能な、運動学習に伴う身体運動パターンの変容を捉える機械学習手法を提案した。これにより、効果的なリハビリテーションやスポーツトレーニングがいつでもどこでも可能となる将来への実現へと一歩近づくことが期待できる。

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • Research Products

    (20 results)

All 2020 2019 2018 Other

All Int'l Joint Research (2 results) Journal Article (6 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 6 results,  Open Access: 6 results) Presentation (10 results) (of which Int'l Joint Research: 3 results,  Invited: 8 results) Remarks (2 results)

  • [Int'l Joint Research] New York University(米国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Toronto Rehabilitation Institute(カナダ)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Larger, but not better, motor adaptation ability inherent in medicated Parkinson’s disease patients revealed by a smart-device-based study2020

    • Author(s)
      Takiyama Ken、Sakurada Takeshi、Shinya Masahiro、Sato Takaaki、Ogihara Hirofumi、Komatsu Taiki
    • Journal Title

      Scientific Reports

      Volume: 10 Issue: 1 Pages: 1-11

    • DOI

      10.1038/s41598-020-63717-x

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A data-driven approach to decompose motion data into task-relevant and task-irrelevant components in categorical outcome2020

    • Author(s)
      Furuki Daisuke、Takiyama Ken
    • Journal Title

      Scientific Reports

      Volume: 10 Issue: 1 Pages: 1-8

    • DOI

      10.1038/s41598-020-59257-z

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Speed-dependent and mode-dependent modulations of spatiotemporal modules in human locomotion extracted via tensor decomposition2020

    • Author(s)
      Takiyama Ken、Yokoyama Hikaru、Kaneko Naotsugu、Nakazawa Kimitaka
    • Journal Title

      Scientific Reports

      Volume: 10 Issue: 1 Pages: 1-15

    • DOI

      10.1038/s41598-020-57513-w

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Optimizing motor decision-making through competition with opponents2020

    • Author(s)
      Ota, K., Tanae, T., Ishii, K., & Takiyama., K.
    • Journal Title

      Scientific Reports

      Volume: 10:950 Issue: 1 Pages: 1-14

    • DOI

      10.1038/s41598-019-56659-6

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Decomposing motion that changes over time into task-relevant and task-irrelevant components in a data-driven manner: application to motor adaptation in whole-body movements2019

    • Author(s)
      Furuki Daisuke、Takiyama Ken
    • Journal Title

      Scientific Reports

      Volume: 9 Issue: 1 Pages: 1-17

    • DOI

      10.1038/s41598-019-43558-z

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Influence of switching rule on motor learning.2018

    • Author(s)
      K. Ishii, T. Hayashi, K. Takiyama
    • Journal Title

      Scientific Reports

      Volume: 8 Issue: 1 Pages: 13559-13559

    • DOI

      10.1038/s41598-018-31825-4

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 身体運動データに潜む課題関連成分を抽出する2020

    • Author(s)
      瀧山健
    • Organizer
      電子情報通信学会総合大会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] A data-driven approach to decompose motion data into task-relevant and task-irrelevant components2020

    • Author(s)
      Ken Takiyama
    • Organizer
      UT-TUM joint workshop: Online and offline movement corrections: from neuronal mechanisms to the practical applications
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 既存理論の鳥瞰図を描く -身体運動制御・身体運動学習の統一的枠組みを目指して-2019

    • Author(s)
      瀧山健
    • Organizer
      ASCONE 2019
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Detecting task-dependent modulation and individual difference of spatiotemporal module via tensor decomposition2019

    • Author(s)
      Ken Takiyama
    • Organizer
      The 3rd Annual Neuromechanics and Motor Control Meeting
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] How to reveal neural mechanisms of motor learning from human behavior2019

    • Author(s)
      Ken Takiyama
    • Organizer
      Voice recognition system
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] How to measure and model our motor learning ability?2019

    • Author(s)
      Ken Takiyama
    • Organizer
      NAIST コロキアムA
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Detection of task-relevant and task-irrelevant motion sequences: application to motor adaptation in goal-directed and whole-body movements2018

    • Author(s)
      Ken Takiyama
    • Organizer
      Forum at RIKEN CBS
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Detection of task-relevant and task-irrelevant motion sequences: application to motor adaptation in goal-directed and whole-body movements2018

    • Author(s)
      Ken Takiyama, Daisuke Furuki
    • Organizer
      Annual meeting of Society for Neuroscience
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 「ばらつき」の特徴を捉える機械学習手法2018

    • Author(s)
      瀧山健
    • Organizer
      Motor Control 研究会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Influence of switching rule on motor learning2018

    • Author(s)
      Koutaro Ishii, Takuji Hayashi, Ken Takiyama
    • Organizer
      日本神経科学学会
    • Related Report
      2018 Research-status Report
  • [Remarks] 瀧山健のHomepage

    • URL

      https://sites.google.com/site/takiyama1106/

    • Related Report
      2019 Annual Research Report
  • [Remarks] 身体運動の“コツ”・ “クセ”を見破る手法の開発

    • URL

      http://www.tuat.ac.jp/outline/disclosure/pressrelease/2019/20190510_01.html

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi