• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of knowledge discovery algorithms based on information theoretic methods

Research Project

Project/Area Number 18K17998
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60010:Theory of informatics-related
Research InstitutionKyoto University (2020)
The University of Tokyo (2018-2019)

Principal Investigator

Honda Junya  京都大学, 情報学研究科, 准教授 (10712391)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords機械学習 / 情報理論 / バンディット問題
Outline of Final Research Achievements

The multi-armed bandit problem is a problem of appropriately finding and choosing the candidates to be explored under a limited number of trials. In this research, we investigated policies for this problem based on the techniques of information theory. In particular, we established theoretical guarantees of the policy called Thompson sampling from the viewpoint of the information-theoretic lower bound, whereas this policy has been often used as an empirically promising heuristics. Furthermore, we also addressed the problem of finding the best candidate with the largest reward expectation rather than maximizing the cumulative reward in the multi-armed bandit problem. In this problem, existing formulations often required unrealistically large trials and heavy computation. In this research we formulate problems that are feasible under a realistic number of trials with practical algorithms by appropriately establishing the information-theoretic difficulty of the problem.

Academic Significance and Societal Importance of the Research Achievements

本研究の結果はトンプソン抽出の適用可能性とその限界を明らかにしたものであるが、この方策は推薦システムなど既に実社会で多く用いられているものであり、その正当性を明らかにすることはバンディット方策を安全に社会で運用することに貢献するものである.また,この分野の発展に伴いこれらの方策を治験などより社会的に繊細な問題に対して適用しようとする試みが近年あるが,これらの設定では推薦システムといった設定に比べて可能な試行回数が大幅に少ないことが障害になっている.本研究はこういった設定に対しても意味のある保証が可能な枠組みを定式化した点で,より社会の広範な設定でバンディット方策を適用可能とする意義をもつ.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (13 results)

All 2020 2019 2018 Other

All Int'l Joint Research (1 results) Journal Article (12 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 12 results,  Open Access: 10 results)

  • [Int'l Joint Research] Ecole Polytechnique(フランス)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Polynomial-time Algorithms for Multiple-arm Identification with Full-bandit Feedback2020

    • Author(s)
      Yuko Kuroki, Liyuan Xu, Atsushi Miyauchi, Junya Honda, Masashi Sugiyama
    • Journal Title

      Neural Computation

      Volume: vol.32, no.8 Issue: 9 Pages: 1733-1773

    • DOI

      10.1162/neco_a_01299

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Analysis and Design of Thompson Sampling for Stochastic Partial Monitoring2020

    • Author(s)
      Taira Tsuchiya, Junya Honda, Masashi Sugiyama
    • Journal Title

      Neural Information Processing Systems

      Volume: 33 Pages: 8861-8871

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Learning from Positive and Unlabeled Data with a Selection Bias2019

    • Author(s)
      Masahiro Kato, Teshima Takeshi, Junya Honda
    • Journal Title

      The Seventh International Conference on Learning Representations (ICLR2019)

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] On the Calibration of Multiclass Classification with Rejection2019

    • Author(s)
      Chenri Ni, Nontawat Charoenphakdee, Junya Honda, Masashi Sugiyama
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 32 Pages: 2586-2596

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Uncoupled Regression from Pairwise Comparison Data2019

    • Author(s)
      Liyuan Xu, Junya Honda, Gang Niu, Masashi Sugiyama
    • Journal Title

      Advances in Neural Information Processing Systems

      Volume: 32 Pages: 3992-4002

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Bandit Algorithms Based on Thompson Sampling for Bounded Reward Distributions2019

    • Author(s)
      Charles Riou, Junya Honda
    • Journal Title

      The 31st International Conference on Algorithmic Learning Theory (ALT2020)

      Volume: 117 Pages: 777-826

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] A bad arm existence checking problem: How to utilize asymmetric problem structure?2019

    • Author(s)
      Tabata Koji、Nakamura Atsuyoshi、Honda Junya、Komatsuzaki Tamiki
    • Journal Title

      Machine Learning

      Volume: 109 Issue: 2 Pages: 327-372

    • DOI

      10.1007/s10994-019-05854-7

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Unsupervised Domain Adaptation Based on Source-guided Discrepancy2019

    • Author(s)
      Seiichi Kuroki, Nontawat Charoenphakdee, Han Bao, Junya Honda, Issei Sato, Masashi Sugiyama
    • Journal Title

      The 23rd AAAI Conference on Artificial Intelligence (AAAI2019)

      Volume: -

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Dueling Bandits with Qualitative Feedback2019

    • Author(s)
      Liyuan Xu, Junya Honda, Masashi Sugiyama
    • Journal Title

      The 23rd AAAI Conference on Artificial Intelligence (AAAI2019)

      Volume: -

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Good Arm Identification via Bandit Feedback2019

    • Author(s)
      Hideaki Kano, Junya Honda, Kentaro Sakamaki, Kentaro Matsuura, Atsuyoshi Nakamura, Masashi Sugiyama
    • Journal Title

      Machine Learning

      Volume: - Issue: 5 Pages: 1-25

    • DOI

      10.1007/s10994-019-05784-4

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Exact Asymptotics of Random Coding Error Probability for General Memoryless Channels2019

    • Author(s)
      Junya Honda
    • Journal Title

      2018 IEEE International Symposium on Information Theory (ISIT2018)

      Volume: - Pages: 1844-1848

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Nonconvex Optimization for Regression with Fairness Constraints2018

    • Author(s)
      Junpei Komiyama, Akiko Takeda, Junya Honda, Hajime Shimao
    • Journal Title

      The 35th International Conference on Machine Learning (ICML2018)

      Volume: - Pages: 2737-2746

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi