• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Statistical inference in exploratory data analysis and its application

Research Project

Project/Area Number 18K18010
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60030:Statistical science-related
Research InstitutionNagasaki University (2020)
Nagoya Institute of Technology (2018-2019)

Principal Investigator

UMEZU Yuta  長崎大学, 情報データ科学部, 准教授 (60793049)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywordsモデル選択 / selective inference / 高次元漸近理論 / 教師なし学習 / 教師あり学習 / 仮説検定 / スパース正則化法 / 逆強化学習 / パターンマイニング / 統計数学 / 多変量解析 / 探索的データ解析
Outline of Final Research Achievements

In recent data science, we often observe data without determining hypothesis to be tested. Particularly, severe selection bias could be occur when the same dataset is used both for generating the hypothesis to be tested and for testing it. Here, in order to correct the selection bias, we focus on the selective inference framework, and tried to improve the existing method. Our main results are the application of the idea of selective inference to unsupervised learning and the development of the method that can be applied to more general class of statistical model by relaxing the normality of the data.

Academic Significance and Societal Importance of the Research Achievements

近年のデータ科学では,検証すべき仮説が定まらないままデータが取得されることが多い.その際,検証すべき仮説の生成と,その仮説の検証を同じデータを用いて行う場合,選択バイアスの問題が生じてしまう.とはいうものの,データの分割や同じ環境での再実験が困難な場合に統計的なエビデンスを提供するためには,同じデータを用いて仮説の生成と検証を行うことが求められる.本研究では,selective inferenceのアイデアに基づき,いろいろな問題に対してこのような統計解析が可能であることを示した.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (20 results)

All 2021 2020 2019 2018

All Journal Article (8 results) (of which Peer Reviewed: 8 results,  Open Access: 5 results) Presentation (10 results) (of which Int'l Joint Research: 1 results,  Invited: 4 results) Book (2 results)

  • [Journal Article] Selective inference for high-order interaction features selected in a stepwise manner2021

    • Author(s)
      Shinya Suzumura, Kazuya Nakagawa, Yuta Umezu, Koji Tsuda, Ichiro Takeuchi
    • Journal Title

      IPSJ Transactions on Bioinformatics

      Volume: 14 Issue: 0 Pages: 1-11

    • DOI

      10.2197/ipsjtbio.14.1

    • NAID

      130007985966

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Variable selection in multivariate linear models for functional data via sparse regularization2020

    • Author(s)
      Hidetoshi Matsui, Yuta Umezu
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: - Issue: 2 Pages: 453-467

    • DOI

      10.1007/s42081-019-00055-x

    • NAID

      210000179793

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A novel sensitive detection method for DNA methylation in circulating free DNA of pancreatic cancer2020

    • Author(s)
      Shinjo K, Hara K, Nagae G, Umeda T, Katsushima K, Suzuki M, Murofushi Y, Umezu Y, Takeuchi I, Takahashi S, Okuno Y, Matsuo K, Ito H, Tajima S, Aburatani H, Yamao K, Kondo Y.
    • Journal Title

      PLoS One

      Volume: 15 Issue: 6 Pages: 0233782-0233782

    • DOI

      10.1371/journal.pone.0233782

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Selective inference via marginal screening for high dimensional classification2019

    • Author(s)
      Yuta Umezu, Ichiro Takeuchi
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 2 Issue: 2 Pages: 559-589

    • DOI

      10.1007/s42081-019-00058-8

    • NAID

      210000171950

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Efficient Learning Algorithm for Sparse SubSequence Pattern-based Classication and Applications to Comparative Animal Trajectory Data Analysis2019

    • Author(s)
      Takuto Sakuma, Kazuya Nishi, Kaoru Kishimoto, Kazuya Nakagawa, Masayuki Karasuyama, Yuta Umezu, Shinsuke Kajioka, Shuhei J. Yamazaki, Koutarou D. Kimura, Sakiko Matsumoto, Ken Yoda, Matasaburo Fukutomi, Hisashi Shidara, Hiroto Ogawa, Ichiro Takeuchi
    • Journal Title

      Advanced Robotics

      Volume: 33 Issue: 3-4 Pages: 134-152

    • DOI

      10.1080/01691864.2019.1571438

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] AIC for the non-concave penalized likelihood method2019

    • Author(s)
      Umezu Yuta、Shimizu Yusuke、Masuda Hiroki、Ninomiya Yoshiyuki
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: 71 Issue: 2 Pages: 247-274

    • DOI

      10.1007/s10463-018-0649-x

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Post Selection Inference with Kernels2018

    • Author(s)
      Makoto Yamada, Yuta Umezu, Kenji Fukumizu, Ichiro Takeuchi
    • Journal Title

      Proceedings of Machine Learning Research

      Volume: 84 Pages: 152-160

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Can AI predict animal movements? Filling gaps in animal trajectories using inverse reinforcement learning2018

    • Author(s)
      Tsubasa Hirakawa, Takayoshi Yamashita, Toru Tamaki, Hironobu Fujiyoshi, Yuta Umezu, Ichiro Takeuchi, Sakiko Matsumoto, Ken Yoda
    • Journal Title

      Ecosphere

      Volume: 9 Issue: 10 Pages: 1-24

    • DOI

      10.1002/ecs2.2447

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 超高次元加法モデルにおけるモデル選択2020

    • Author(s)
      梅津佑太
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Sparse Regularization Method and Information Criterion2020

    • Author(s)
      梅津佑太
    • Organizer
      2020年度統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] カーネル法に基づく超高次元モデル選択2020

    • Author(s)
      梅津佑太
    • Organizer
      2020年度科研費シンポジウム「多様な分野のデータに対する統計科学・機械学習的アプローチ」
    • Related Report
      2020 Annual Research Report
  • [Presentation] 超高次元スパース加法モデルにおける変数選択2019

    • Author(s)
      梅津佑太
    • Organizer
      科研費シンポジウム「統計学と機械学習の数理と展開」
    • Related Report
      2019 Research-status Report
  • [Presentation] 超高次元加法モデルにおける変数選択2019

    • Author(s)
      梅津佑太
    • Organizer
      第22回情報論的学習理論ワークショップ(IBIS2019)
    • Related Report
      2019 Research-status Report
  • [Presentation] Selective Inference for Change Point Detection in Multi-dimensional Sequences2018

    • Author(s)
      Yuta Umezu
    • Organizer
      Chile-Japan Academic Forum 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Selective Inference に基づく変化点検出とその応用2018

    • Author(s)
      梅津佑太, 竹内一郎
    • Organizer
      日本応用数理学会2018年度年会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Selective Inference に基づく多変量系列の変化点検出2018

    • Author(s)
      梅津佑太
    • Organizer
      日本行動計量学会第 46 回大会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Selective Inference に基づくスパース線形回帰モデルにおける能動学習2018

    • Author(s)
      梅津佑太, 竹内一郎
    • Organizer
      第21回情報論的学習理論ワークショップ (IBIS 2018)
    • Related Report
      2018 Research-status Report
  • [Presentation] Selective Inference under the Local Alternative2018

    • Author(s)
      梅津佑太, 竹内一郎
    • Organizer
      2018年度 統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Book] 大規模計算時代の統計推論2020

    • Author(s)
      Bradley Efron、Trevor Hastie、藤澤 洋徳、井手 剛、井尻 善久、井手 剛、牛久 祥孝、梅津 佑太、大塚 琢馬、尾林 慶一、川野 秀一、田栗 正隆、竹内 孝、橋本 敦史、藤澤 洋徳、矢野 恵佑
    • Total Pages
      600
    • Publisher
      共立出版
    • ISBN
      9784320114340
    • Related Report
      2020 Annual Research Report
  • [Book] スパース回帰分析とパターン認識2020

    • Author(s)
      梅津 佑太, 西井 龍映, 上田 勇祐
    • Total Pages
      208
    • Publisher
      講談社サイエンティフィク
    • ISBN
      9784065186206
    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi