• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on pseudorandom number generation and quasi-Monte Carlo methods for computational statistics

Research Project

Project/Area Number 18K18016
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60030:Statistical science-related
Research InstitutionRitsumeikan University

Principal Investigator

Harase Shin  立命館大学, 理工学部, 講師 (80610576)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords擬似乱数 / モンテカルロ法 / 準モンテカルロ法 / マルコフ連鎖モンテカルロ法 / 統計計算 / ベイズ統計学 / 計算統計
Outline of Final Research Achievements

We developed quasi-random point sets for Markov chain Monte Carlo. We proposed a method to use the output values generated by short-period Tausworthe generators as quasi-random points and conducted an exhaustive search in terms of the t-value, which is a measure of uniformity. We implemented our new generators and applied them to Bayesian computation in practice. We demonstrated the effectiveness in numerical examples, such as hierarchical models and regression models.
Motivated by recent progress on 64-bit pseudorandom number generators, we analyzed the conversion from 32-bit Mersenne Twister to 53-bit double-precision floating-point numbers. From this point of view, we presented that MT19937 with a specific lag set fails several statistical tests. As another research, we conducted a comparative study of Sobol' quasi-random sequences in financial applications; in particular, we investigated the relationship between the t-value and the rate of convergence in numerical integration.

Academic Significance and Societal Importance of the Research Achievements

MCMC法は、統計科学において必要不可欠な道具となっているが、収束が非常に遅い。しかるに、MCMC法では、従来の準乱数はそのまま適用できない。ここで、CUD列と呼ばれる特殊な点列を用いると、準モンテカルロ法による期待値計算に適用できることが理論的に示されているが、具体的な点列の構成は不十分であった。本研究課題では、擬似乱数と準モンテカルロ法の手法を駆使して、MCMC法のための新しい準乱数を開発した。実際に、ベイズ統計学に現れるMCMC法に適用して、収束性の向上を確認した。この結果は、統計計算において、非常に広範な応用を持つことが期待される。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (18 results)

All 2022 2021 2020 2019 2018 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (11 results) (of which Int'l Joint Research: 3 results) Remarks (4 results)

  • [Journal Article] A table of short-period Tausworthe generators for Markov chain quasi-Monte Carlo2021

    • Author(s)
      Shin Harase
    • Journal Title

      Journal of Computational and Applied Mathematics

      Volume: 384 Pages: 113136-113136

    • DOI

      10.1016/j.cam.2020.113136

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Comparison of Sobol' sequences in financial applications2019

    • Author(s)
      Shin Harase
    • Journal Title

      Monte Carlo Methods and Applications

      Volume: 25 Issue: 1 Pages: 61-74

    • DOI

      10.1515/mcma-2019-2029

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Conversion of Mersenne Twister to double-precision floating-point numbers2019

    • Author(s)
      Shin Harase
    • Journal Title

      Mathematics and Computers in Simulation

      Volume: 161 Pages: 76-83

    • DOI

      10.1016/j.matcom.2018.08.006

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Fibonacci格子の多項式類似と準乱数生成への応用2022

    • Author(s)
      原瀬晋
    • Organizer
      日本応用数理学会2022年度年会
    • Related Report
      2022 Annual Research Report
  • [Presentation] A Construction of Short-Period Tausworthe Generators with Low Discrepancies over Fb2021

    • Author(s)
      Shin Harase
    • Organizer
      13th International Conference on Monte Carlo Methods and Applications (MCM 2021)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] マルコフ連鎖準モンテカルロ法の使い方2021

    • Author(s)
      原瀬晋
    • Organizer
      2021年度統計関連学会連合大会
    • Related Report
      2021 Research-status Report
  • [Presentation] Implementing short-period Tausworthe generators for Markov chain quasi-Monte Carlo2020

    • Author(s)
      Shin Harase
    • Organizer
      14th International Conference in Monte Carlo & Quasi-Monte Carlo Methods in Scientific Computing (MCQMC 2020)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] マルコフ連鎖準モンテカルロ法の応用2020

    • Author(s)
      原瀬晋
    • Organizer
      日本応用数理学会2020年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] マルコフ連鎖準モンテカルロ法のための短い周期のTausworthe発生法2020

    • Author(s)
      原瀬晋
    • Organizer
      立命館大学数理ファイナンスセミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] マルコフ連鎖準モンテカルロ法のための短い周期のTausworthe発生法2019

    • Author(s)
      原瀬晋
    • Organizer
      JCCA-2019・ 離散数学とその応用研究集会2019
    • Related Report
      2019 Research-status Report
  • [Presentation] 正則連分数展開に基づく短い周期のTausworthe発生法2019

    • Author(s)
      原瀬晋
    • Organizer
      日本応用数理学会2019年度年会
    • Related Report
      2019 Research-status Report
  • [Presentation] マルコフ連鎖準モンテカルロ法のための短い周期のTausworthe発生法2019

    • Author(s)
      原瀬晋
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] マルコフ連鎖準モンテカルロ法のための短い周期のTausworthe発生法2019

    • Author(s)
      原瀬晋
    • Organizer
      第1回「乱数・準乱数の数学」研究集会
    • Related Report
      2019 Research-status Report
  • [Presentation] Implementing Short-Period Tausworthe Generators for Markov Chain Quasi-Monte Carlo Methods2018

    • Author(s)
      Shin Harase
    • Organizer
      13th International Conference in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC2018)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Remarks] F4上の短周期Tausworthe発生法のサンプルプログラム

    • URL

      https://github.com/sharase/cud-f4

    • Related Report
      2022 Annual Research Report
  • [Remarks] 64ビット最適均等分布F2-線形擬似乱数発生法

    • URL

      https://github.com/sharase/melg-64

    • Related Report
      2020 Research-status Report
  • [Remarks] マルコフ連鎖準モンテカルロ法のための短い周期のTausworthe発生法のパラメータテーブル

    • URL

      https://github.com/sharase/cud

    • Related Report
      2019 Research-status Report
  • [Remarks] Sobol'-Niederreiter列のパラメータテーブル

    • URL

      https://github.com/sharase/niederreiter-nut

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi