• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Learning-based outdoor plant trait measurement method using images

Research Project

Project/Area Number 18K18074
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionOsaka Metropolitan University (2022)
Osaka Prefecture University (2018-2021)

Principal Investigator

Utsumi Yuzuko  大阪公立大学, 大学院情報学研究科, 講師 (80613489)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Keywords植物形態計測 / 深層学習 / 分げつ / Pretext task / 単子葉植物 / 植物計測 / 分げつ数推定 / 植物画像処理 / 3次元点群 / 画像処理 / Pre-traiend model / 画像計測 / 3次元復元 / Instance segmentation
Outline of Final Research Achievements

We proposed a method for estimating the tiller number, which is the number of branching segments in grass plants, from a single image of the plant taken from the side. The tiller number is difficult to count nondestructively, and collecting a large amount of training data is impossible. Therefore, we estimated the tiller number of grass plants using a pretext task and a pre-trained model, which can be applied to deep learning even when training data is limited. As a result, the accuracy was improved compared to the conventional estimation method using images.

Academic Significance and Societal Importance of the Research Achievements

農学では,フェノタイピングを目的として,植物の形質を大量に計測する必要性が高まっている.しかし,現在多くの計測は人手に頼っており,大きな労力と時間がかかることから,研究のボトルネックとなっている.特に,分げつ数は,成長の初期段階から生育の追従をする必要があることから,大量の植物を計測することができなかった.本研究では,1枚の画像から自動で分げつを推定することから,作業負荷軽減と大量の個体の計測が可能となる.このことから,本研究は,フェノタイピングのボトルネック解消に貢献できると考えられる.

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (6 results)

All 2023 2020 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Journal Article] Tiller estimation method using deep neural networks2023

    • Author(s)
      Kinose Rikuya、Utsumi Yuzuko、Iwamura Masakazu、Kise Koichi
    • Journal Title

      Frontiers in Plant Science

      Volume: 13 Pages: 1-11

    • DOI

      10.3389/fpls.2022.1016507

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] DNN-based plant phenome estimation with small data2020

    • Author(s)
      Yuzuko Utsumi
    • Organizer
      2020 JST The Second International Workshop on Field Phenotyping and Modeling for Cultivation
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Self-supervised Learning を用いた画像からの単子葉植物の分げつ数推定2020

    • Author(s)
      黄瀬陸哉,内海ゆづ子,岩村雅一,黄瀬浩一
    • Organizer
      情報処理学会コンピュータビジョンとイメージメディア研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] 小規模な正解ラベル付きデータを用いたCNN に基づくエノコログサの分げつ数の推定2019

    • Author(s)
      中村浩一朗,内海ゆづ子,岩村雅一,黄瀬浩一
    • Organizer
      農業情報学会2019年大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Pretext taskを用いた植物画像からの分げつ数の推定2019

    • Author(s)
      内海ゆづ子,中村浩一郎,岩村雅一,黄瀬浩一
    • Organizer
      電子情報通信学会 パターン認識・メディア理解研究会(PRMU研究会)
    • Related Report
      2018 Research-status Report
  • [Presentation] DNN-Based Tiller Number Estimation for Insufficient Training Data2019

    • Author(s)
      Yuzuko Utsumi, Koichiro Nakamura, Masakazu Iwamura and Koichi Kise
    • Organizer
      Computer Vision Problems in Plant Phenotyping (CVPPP) 2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi