• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Theory and methods for nonlinear feature extraction

Research Project

Project/Area Number 18K18107
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionFuture University-Hakodate (2019-2020)
Nara Institute of Science and Technology (2018)

Principal Investigator

Sasaki Hiroaki  公立はこだて未来大学, システム情報科学部, 准教授 (80756916)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords非線形特徴抽出 / 非線形独立成分分析 / 外れ値 / 相互情報量最大化 / ニューラルネットワーク / 統計的因果推論 / 特徴抽出 / 独立成分分析 / 因果推論 / 十分次元削減 / カーネル法 / 次元削減 / 機械学習 / 教師あり学習 / 教師なし学習
Outline of Final Research Achievements

This research is aimed at developing a theory and methods for nonlinear feature extraction. A rigorous theory for nonlinear independent component analysis (ICA) was established. Furthermore, a unified framework has been proposed for unsupervised nonlinear feature extraction, which includes nonlinear ICA, maximization of mutual information and nonlinear subspace estimation as special cases. Practical methods were also proposed. Especially, a robust method against outliers was developed and investigated through both theoretical analysis and numerical experiments.

Academic Significance and Societal Importance of the Research Achievements

これまでの教師なし非線形特徴抽出の実践手法は経験・発見的なアプローチに基づくことが多く,その理論的な背景を理解することが難しい状況にあった.それに対して,本研究で提案した統一的な枠組みは既存の非線形特徴抽出の理論的な基盤となる可能性があり,学術的な意義は大きい.また,提案した枠組みは密度比推定に基づくため,既存の密度比推定法を応用・拡張することによって,さらなる実践手法の発展が見込めるため,今後の成果が期待される研究内容である.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (13 results)

All 2020 2019 2018 Other

All Int'l Joint Research (4 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (6 results) (of which Int'l Joint Research: 4 results,  Invited: 1 results)

  • [Int'l Joint Research] University of Helsinki(フィンランド)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Helsinki(フィンランド)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University College London(英国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University college London(英国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Robust modal regression with direct log-density derivative estimation2020

    • Author(s)
      Hiroaki Sasaki, Tomoya Sakai, Takafumi Kanamori
    • Journal Title

      Proceedings of the international conference on uncertainty in artificial intelligence (UAI)

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Robust contrastive learning and nonlinear ICA in the presence of outliers2020

    • Author(s)
      Hiroaki Sasaki, Takashi Takenouchi, Ricardo Monti, Aapo Hyvarinen
    • Journal Title

      Proceedings of the international conference on uncertainty in artificial intelligence (UAI)

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning2019

    • Author(s)
      Aapo Hyvarinen, Hiroaki Sasaki and Richard E. Turner
    • Journal Title

      Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS)

      Volume: 89 Pages: 859-868

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Robust modal regression with direct gradient approximation of modal regression risk2020

    • Author(s)
      Hiroaki Sasaki
    • Organizer
      Conference on Uncertainty in Artificial Intelligence (UAI 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Robust contrastive learning and nonlinear ICA in the presence of outliers2020

    • Author(s)
      Hiroaki Sasaki
    • Organizer
      Conference on Uncertainty in Artificial Intelligence (UAI 2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Robust modal regression with direct log-density derivative estimation2019

    • Author(s)
      佐々木 博昭,坂井 智哉,金森 敬文
    • Organizer
      第22回情報論的学習理論ワークショップ (IBIS 2019)
    • Related Report
      2019 Research-status Report
  • [Presentation] Robust contrastive learning and nonlinear ICA in the presence of outliers2019

    • Author(s)
      佐々木 博昭,竹之内 高志,Ricardo Monti,Aapo Hyvarinen
    • Organizer
      第22回情報論的学習理論ワークショップ (IBIS 2019)
    • Related Report
      2019 Research-status Report
  • [Presentation] Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning2019

    • Author(s)
      Aapo Hyvarinen, Hiroaki Sasaki and Richard E. Turner
    • Organizer
      International Conference on Artificial Intelligence and Statistics (AISTATS)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Hunting Geometric Features in the Probability Density Function with Direct Density-Derivative-Ratio Estimation2018

    • Author(s)
      Hiroaki Sasaki
    • Organizer
      the 11th International Conference of the ERCIM WG on Computational and Methodological Statistics (Organized session: “Mean shift and localization techniques”)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi