• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Self-generation of Optimization criteria on Evolutionary Computation for Computationally-expensive optimization problems

Research Project

Project/Area Number 18K18123
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61040:Soft computing-related
Research InstitutionYokohama National University

Principal Investigator

Nakata Masaya  横浜国立大学, 大学院工学研究院, 准教授 (00781072)

Project Period (FY) 2018-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywords進化計算 / メタヒューリスティックス / 機械学習 / 進化的機械学習 / 最適化
Outline of Final Research Achievements

This project proposed an evolutionary optimization technique that identifies and then uses useful optimization criteria based on solution structure and solution variable dependency. Generated optimization criteria require no additional evaluations of evaluations, and thus the proposed method can be suitable for computationally expensive optimization problems. While the proposed method was initially designed for a single-objective optimization problem, beyond this goal, this project extended our methodology to large-scale optimization problems and multi-objective optimization problems. Accordingly, this project provides the following contributions. Firstly, optimizing based on an extracted solution structure of good solutions can enhance an optimization performance especially in single-objective problems including large-scape optimization problems. Secondly, an SVM-based optimization criterion which predicts good solutions is suitable for multi-objective optimization problems.

Academic Significance and Societal Importance of the Research Achievements

工学設計における最適化問題の多くは、1つの解評価に数時間から数日必要となる高計算コストな最適化問題に属する場合が多い。この場合、可能な限り少ない解評価で良好な解の導出を求めることが重要となる。本研究は、専門的な知識がなくとも利用できる使い勝手が良い進化的最適化法に、解評価を必要とせずに最適化を促進する方法論とその実装方法明らかにすることで、高計算コストな問題に特化した効率の良い手法を構築した点に意義がある。加えて、この手法は、実最適化問題で頻出する大規模問題、多目的最適化問題にも対応できることを示した。

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • Research Products

    (10 results)

All 2020 2019 2018 Other

All Int'l Joint Research (1 results) Presentation (9 results) (of which Int'l Joint Research: 6 results)

  • [Int'l Joint Research] Victoria University of Wellington(ニュージーランド)

    • Related Report
      2019 Annual Research Report
  • [Presentation] MOEA/D-S^3: MOEA/D using SVM-based Surrogates adjusted to Subproblems for Many objective optimization2020

    • Author(s)
      Takumi Sonoda and Masaya Nakata
    • Organizer
      IEEE World Congress on Computational Intelligence 2020
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Competitive-Adaptive Algorithm-Tuning of Metaheuristics inspired by the Equilibrium Theory: A Case Study2020

    • Author(s)
      Kei Nishihara and Masaya Nakata
    • Organizer
      IEEE World Congress on Computational Intelligence 2020
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Self-adaptation of XCS learning parameters based on Learning theory2020

    • Author(s)
      Motoki Horiuchi and Masaya Nakata
    • Organizer
      The Genetic and Evolutionary Computation Conference 2020
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] How XCS Can Prevent Misdistinguishing Rule Accuracy: A Preliminary Study2019

    • Author(s)
      Masaya Nakata and Will Browne
    • Organizer
      The Genetic and Evolutionary Computation Conference 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Complex-Valued-based Learning Classifier System for POMDP Environments2019

    • Author(s)
      Keiki Takadama, Daichi Yamazaki, Masaya Nakata and Hiroyuki Sato
    • Organizer
      IEEE World Congress on Evolutionary Computation 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 領域予測を用いた局所探索による多目的最適化のための遺伝的アルゴリズム2018

    • Author(s)
      栗原 佳祐,中田 雅也,濱上 知樹
    • Organizer
      第28回インテリジェント・システム・シンポジウム
    • Related Report
      2018 Research-status Report
  • [Presentation] SVMを用いた優良個体存在領域の予測による差分進化2018

    • Author(s)
      池原 健矢,濱上 知樹,中田 雅也,佐々木 勇人
    • Organizer
      第28回インテリジェント・システム・シンポジウム
    • Related Report
      2018 Research-status Report
  • [Presentation] Theoretical adaptation of multiple rule-generation in XCS2018

    • Author(s)
      Masaya Nakata, Will Browne, Tomoki Hamagami
    • Organizer
      Genetic and Evolutionary Computation Conference 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] XCSの学習スキームにおけるルールの完全識別条件2018

    • Author(s)
      中田雅也,Will N. Browne
    • Organizer
      進化計算シンポジウム2018
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi