• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Transfer learning using body representation between heterogeneous learning robots

Research Project

Project/Area Number 18K18133
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61050:Intelligent robotics-related
Research InstitutionTokyo Polytechnic University

Principal Investigator

Kono Hitoshi  東京工芸大学, 工学部, 助教 (70758367)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords強化学習 / 転移学習 / 身体図式 / ボディキャリブレーション / 多脚型ロボット / 物理演算シミュレーション / 身体マッピング / 身体表象 / 自己身体表象 / 自律ロボット
Outline of Final Research Achievements

The aim of this research is to develop a method which is automatically calculation the difference among heterogeneous robots' body structure based on body representation. Transfer the knowledge is needed the mapping description method between robots’ heterogeneity. In this research, a body calibration is proposed and developed in which the robot automatically learns the own body structure. The proposed method evaluated using virtual multi-legged robot constructed in the physics simulation and two types of real multi-legged robots. Reinforcement learning and transfer learning were performed between developed robots, and the usefulness of the proposed method was evaluated.

Academic Significance and Societal Importance of the Research Achievements

本研究の学術的意義は,ヒトの脳内で動作していると考えられる身体表象や身体図式の理論をロボットに応用することにより,ロボット間における異なる身体的構造を自動的に記述できることにある.これにより社会的意義としては,様々な学習ロボット間での知識の再利用,すなわち転移学習の際に身体性や構造の違いをヒトが定義する必要がなく,より転移学習の実世界応用を支援する技術である.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (5 results)

All 2020 2019 Other

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (2 results) Remarks (2 results)

  • [Journal Article] Automatic Transfer Rate Adjustment for Transfer Reinforcement Learning2020

    • Author(s)
      Hitoshi Kono, Yuto Sakamoto, Yonghoon Ji and Hiromitsu Fujii
    • Journal Title

      International Journal of Artificial Intelligence and Applications

      Volume: 11 Issue: 6 Pages: 47-54

    • DOI

      10.5121/ijaia.2020.11605

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] ヒトの身体表象を参考にした 異なる身体性を有するロボット間での転移学習手法2019

    • Author(s)
      池田悟,河野仁
    • Organizer
      ロボティクス・メカトロニクス講演会2019(ROBOMECH2019)
    • Related Report
      2019 Research-status Report
  • [Presentation] ヒトの身体表象を参考にした異なる身体性を有するロボット間での転移学習手法2019

    • Author(s)
      池田悟,河野仁
    • Organizer
      ロボティクス・メカトロニクス 講演会 2019 in Hiroshima
    • Related Report
      2018 Research-status Report
  • [Remarks] 東京工芸大学知能ロボットシステム研究室ホームページ

    • URL

      http://irsl01.em.t-kougei.ac.jp

    • Related Report
      2020 Annual Research Report
  • [Remarks] 東京工芸大学知能ロボットシステム研究室ホームページ

    • URL

      http://irsl01.em.t-kougei.ac.jp./?page_id=8

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi