Project/Area Number |
18K18185
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 63010:Environmental dynamic analysis-related
|
Research Institution | National Institute of Information and Communications Technology |
Principal Investigator |
Sato Tomohiro 国立研究開発法人情報通信研究機構, テラヘルツ研究センター, 主任研究員 (60774627)
|
Project Period (FY) |
2018-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 地球温暖化 / 衛星リモートセンシング / 炭素同位体比 / リトリーバル解析 / 機械学習 / 温室効果ガス / 地球炭素収支 / 同位体比 |
Outline of Final Research Achievements |
In predicting global warming, it is important to understand the balance of CO2 emissions and absorption from land, ocean, human activities, etc. Carbon isotope ratios are its powerful indicator. To understand the global behavior of CO2 carbon isotope ratios, we constructed a machine learning model using long-term observation data from the GOSAT satellite and ground observation data from the World Data Centre for Greenhouse Gases (WDCGG). Global distribution of CO2 carbon isotope ratios were derived with a precision of a few per mille, equivalent to WDCGG observations. As a result, we showed that CO2 carbon isotope ratios take large negative values in the mid-latitudes of the Northern Hemisphere, where there are many anthropogenic CO2 emission sources. Although further verification is necessary, it showed the further potential of isotope research using satellite observations.
|
Academic Significance and Societal Importance of the Research Achievements |
CO2炭素同位体比観測は、これまでは質量分析計による地上観測や航空機観測が主流であった。これらは観測精度は十分だが、観測範囲が時空間的に制限されるという課題があり、地球全体をグローバルに観た包括的な理解は進んでいなかった。本研究は、GOSATの豊富な観測データと機械学習の導入により、CO2炭素同位体比のグローバル分布を初めて導出した。 また、衛星による同位体観測の観点では、本研究は従来の水やオゾンのような10~100パーミル程度の大きな同位体濃縮ではなく、数パーミル程度の小さなCO2の同位体濃縮を導出した。本研究を先駆けとして、メタンや窒素化合物等の他の分子種へと発展していくことが期待される。
|