Polymer nano-complex-based high efficient control of the dynamics of living membranes and the application
Project/Area Number |
18K18384
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 90120:Biomaterials-related
|
Research Institution | The University of Tokyo (2019) Tokyo Institute of Technology (2018) |
Principal Investigator |
Masuda Tsukuru 東京大学, 大学院工学系研究科(工学部), 助教 (70814010)
|
Project Period (FY) |
2018-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | 生体材料 / 高分子材料 / 生体膜活性化ペプチド / 精密ラジカル重合 / 生体膜 / 生体膜透過ペプチド / 膜破壊ペプチド / 刺激応答性高分子 |
Outline of Final Research Achievements |
In this study, the nano-complex of the smart polymer and membrane-active peptide, E5 has been designed to control the transformation of lipid membranes. A cationic comb-type polymer composed of the cationic main chain and hydrophilic side chain forms a complex with E5 peptide, resulting in enhancement the activity of E5. When this complex was added to the liposome, transformation from vesicle into sheet was induced. This would be because the complex significantly decreased the interfacial energy of the lipid membrane. Moreover, A cationic comb-type copolymer with thermoresponsive side chain was designed. The use of the thermoresponsive polymer allowed the transformation control of the lipid membrane by temperature change. A novel method to modifying the polymer chain onto the surface of lipid membrane was also developed.
|
Academic Significance and Societal Importance of the Research Achievements |
生体膜の形態変化・出芽・融合といった動的な挙動を生理的な条件下において効率的に制御する人工材料が設計できれば、生体膜の動的挙動の機構解明や新規な薬物送達など生体材料としての応用に大きく貢献することができる。 本高分子・ペプチド複合体が誘起する脂質膜のベシクル(小胞)からシート形状への構造転移は100%近い高効率である点が特徴のひとつである。さらに、刺激応答性高分子の相転移とカップリングした構造転移の制御にも成功している。このような環境変化を認識した脂質膜の構造転移や、本研究で開発した効果的に高分子材料と生体分子を複合化する手法は、新しい生体材料としての展開が期待される。
|
Report
(3 results)
Research Products
(18 results)