• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Identification of prognostic factors for elderly hospitalized patients with multiple diseases: improving interpretability of machine learning models.

Research Project

Project/Area Number 18K18471
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Studies on the Super-Aging Society
Research InstitutionYokohama City University (2020, 2022-2023)
Institute for Health Economics and Policy, Association for Health Economics Rsearch and Social Insurance and Welfare (2018-2019)

Principal Investigator

Shimizu Sayuri  横浜市立大学, データサイエンス研究科, 講師 (60625408)

Co-Investigator(Kenkyū-buntansha) 原 聡  大阪大学, 産業科学研究所, 准教授 (40780721)
伏見 清秀  東京医科歯科大学, 大学院医歯学総合研究科, 教授 (50270913)
Project Period (FY) 2018-06-29 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords医療データベース / 機械学習 / データベース研究 / スパースデータ / 解釈性の向上 / バリデーション / Multimorbidity / 予測モデル / 大規模医療データベース / マシーンラーニング / 大規模医療データ / マルチモビディティ
Outline of Final Research Achievements

The increasing number of elderly individuals with multiple diseases and reduced physical resilience makes it imperative to evaluate them from a comprehensive perspective in database studies for clinical assessment. In this study, we constructed prediction models using multiple methods, including conventional models, gradient boosting models, and models that take interpretability into account, suggesting that it is possible to improve the accuracy of prediction models. This analysis reiterates the significance of selecting an analytical model that accounts for the distinctive characteristics of healthcare administrative data, the analytical compatibility with machine learning models, and interpretability.

Academic Significance and Societal Importance of the Research Achievements

臨床現場から日々生成される医療データが蓄積され、世界的な潮流として、これらのデータを臨床や政策に活用しようという動きが広がっています。加えて、従来型の統計モデルから機械学習モデルへのシフトがおこっており、これらのモデルを医療管理分野の分析にどのように活かすかが課題となっていました。本研究では、機械学習モデルがより精度高く予測可能でありましたが、解釈可能性に留意する必要があることが示唆されました。

Report

(6 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (7 results)

All 2024 2023 2022 2019

All Journal Article (3 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results) Book (1 results)

  • [Journal Article] In-Hospital Mortality in Patients With Cardiogenic Shock Requiring Veno-Arterial Extracorporeal Membrane Oxygenation With Concomitant Use of Impella vs. Intra-Aortic Balloon Pump ― A Retrospective Cohort Study Using a Japanese Claims-Based Database ―2024

    • Author(s)
      Manabu Nitta, Shintaro Nakano, Makoto Kaneko, Kiyohide Fushimi, Kiyoshi Hibi, Sayuri Shimizu
    • Journal Title

      Circulation Journal

      Volume: 88 Issue: 8 Pages: 1276-1285

    • DOI

      10.1253/circj.CJ-23-0758

    • ISSN
      1346-9843, 1347-4820
    • Year and Date
      2024-07-25
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] ビッグデータを対象とした解析の実際と読み方のポイント2023

    • Author(s)
      清水沙友里
    • Journal Title

      Life Support and Anesthesia(LiSA)

      Volume: 6月号

    • Related Report
      2022 Research-status Report
  • [Journal Article] 医療・健康分野におけるビッグデータ解析2023

    • Author(s)
      清水沙友里
    • Journal Title

      会報光触媒

      Volume: 71 Pages: 41-46

    • Related Report
      2022 Research-status Report
  • [Presentation] ビッグデータとAIにより広がる近未来予想図2022

    • Author(s)
      清水沙友里
    • Organizer
      第33回日本臨床モニター学会総会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 生物統計セミナー「明日から使える医療統計 クリニカルクエスチョンから論文作成まで一気通貫 part 2」2022

    • Author(s)
      清水沙友里
    • Organizer
      第264回日本循環器学会関東甲信越地方会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Predicting the risk of in-hospital Mortality in Adult Community-Acquired Pneumonia Patients with Machine Learning: A Retrospective Analysis of Routinely Collected Health Data2019

    • Author(s)
      Sayuri Shimizu, Satoshi Hara, Kiyohide Fushimi
    • Organizer
      ISPOR Europe 2019 conference
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Book] データで変える病院経営  第8章 ビッグデータを活用する2022

    • Author(s)
      後藤, 隆久, 原, 広司, 田中, 利樹, 黒木, 淳, 今中, 雄一
    • Total Pages
      286
    • Publisher
      中央経済社,中央経済グループパブリッシング
    • ISBN
      9784502419218
    • Related Report
      2022 Research-status Report

URL: 

Published: 2018-07-25   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi