Empirical research of industry-academia collaboration by big data data mining
Project/Area Number |
18K18581
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 7:Economics, business administration, and related fields
|
Research Institution | Advanced Sclene, Technology & Management Research Institute of Kyoto |
Principal Investigator |
Hirakimoto Akira 公益財団法人京都高度技術研究所, 地域産業活性化本部, コーディネータ・プロジェクトマネージャー (90395567)
|
Co-Investigator(Kenkyū-buntansha) |
難波 英嗣 中央大学, 理工学部, 教授 (50345378)
|
Project Period (FY) |
2018-06-29 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,110,000 (Direct Cost: ¥4,700,000、Indirect Cost: ¥1,410,000)
Fiscal Year 2019: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
|
Keywords | 特許情報 / 論文情報 / 国際特許分類 / 産学連携 / 特許分類 / 論文分類 / データマイニング |
Outline of Final Research Achievements |
The purpose of this research is to contribute to the promotion of industry-academia collaboration based on dissertation data and patent data by conducting detailed visualization using deep learning on the big data of university-issued papers and patents issued by companies. As an achievement of the research, (a) we developed a three-dimensional cross analysis method based on academic classification axis + patent classification axis + time axis, and (b) applied BPT probability distribution to academic paper publication, developed a calculation model for estimating issue date and content, applied for a patent for (b), presented (a) and (b) at Japan Society for Research Policy and Innovation Management and Intellectual Property Association of Japan, and we analyzed 40,000 paper of A university and 15,000 papers of B university, extracted promising researchers, and linked their research to patent applications.
|
Academic Significance and Societal Importance of the Research Achievements |
産学連携の活動は、大学の研究者と、企業の技術者と、その両者を取り持つ産学連携コーディネータという、個人個人の繋がりによるものがほとんどであったので、可視化性・俯瞰性・戦略性に欠けていた。 本研究では、深層学習を用いて、定量的なデータ可視化分析法を開発し、論文を企業の視点から捉え、逆に特許を大学の視点から捉えることを可能としたので、産学連携に、可視化性・俯瞰性・戦略性を提供することができるようになり、今後、大学の論文が特許化され、企業の特許が大学の研究に結びつくことが期待され、産学連携の推進という社会的意義を有するものである。
|
Report
(3 results)
Research Products
(10 results)