Project/Area Number |
18K18769
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 15:Particle-, nuclear-, astro-physics, and related fields
|
Research Institution | High Energy Accelerator Research Organization |
Principal Investigator |
Honda Yosuke 大学共同利用機関法人高エネルギー加速器研究機構, 加速器研究施設, 准教授 (40509783)
|
Project Period (FY) |
2018-06-29 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2018: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | レーザー / 光共振器 / 電子ビーム / 放射光 / 電子加速器 / 蓄積リング |
Outline of Final Research Achievements |
Storage ring synchrotron radiation facilities are competing for diffraction-limited performance. The low emittance design of the ring is important, but as far as the conventional principle is concerned, there is little room for improvement from the simple scaling law. In this research, we aim to achieve performance that exceeds this by using a new beam cooling mechanism called laser cooling. For that purpose, a high-intensity laser is required, but the conventional laser technology of an external optical cavity requires precise resonator control technology and is not suitable. Here, in order to establish a new self-resonant optical cavity scheme that can store laser light in an optical resonator without control, especially at high intensity, a vacuum test environment and a fiber amplifier for high intensity laser were assembled and the performance were tested.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で開発した技術をベースにして、大強度レーザー光を蓄積した光共振器システムを蓄積リングの直線部の複数箇所に設置する。電子ビームと大強度レーザー光を衝突させてコンプトン散乱の過程によるビームエネルギーの損失を導入することで、従来よりも強くビームに減衰を与えることができる。従来のスケーリング則では、回折限界性能を得るには周長500mの大きな蓄積リングが必要であったが、新たなビーム冷却原理を導入することで、より小型で低エネルギーでも同等の性能が得られる可能性がある。近年の科学基盤技術になっている放射光施設がより汎用化されると期待できる。
|