Project/Area Number |
18K18799
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 18:Mechanics of materials, production engineering, design engineering, and related fields
|
Research Institution | University of Tsukuba |
Principal Investigator |
KIZUKA TOKUJI 筑波大学, 数理物質系, 教授 (10234303)
|
Project Period (FY) |
2018-06-29 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 摩擦 / 探針 / 凝着 / 摩耗 / 電子顕微鏡 / その場観察 / 原子直視観察 / 機械素子 / 原子 |
Outline of Final Research Achievements |
Based on in situ transmission electron microscopy, the methodology to produce single-atom sharpened probes was established and substantial strong probes were created. Various single-atom sharpened probes were brought into contact with other probes, substrates, and material surfaces to cause ultimate fine adhesion and friction so that the atomic motion was in situ observed directly and the mechanism was elucidated. The conditions to reduce the mechanical effects of such adhesion and friction were investigated, leading to the production and application of nanometer-sized contact-type nanomechanical devices. The aims for the present study on ultimate fine friction and contact-type nanomechanical devices using single-atom sharpened metallic probes were achieved and the substantial contribution to study and development on the fundamentals of friction and nanometer-sized nanomechanical devices was made.
|
Academic Significance and Societal Importance of the Research Achievements |
ナノメートルサイズの接触型機械素子の実現と進歩は、ナノメートル領域の凝着や摩擦、さらにその結果生じる磨耗をいかに抑制できるかにかかっている。そのためには、これらの過程と機構の解明が必要になる。本研究では、本研究代表者が開発した最先端構造解析法を用いて、このナノメートル領域の凝着、摩擦および磨耗の様相を解明した。本研究の成果は、接触型ナノ機械素子を開発するために必要な数ナノメートルよりも狭い接触領域で生じる凝着や摩擦の研究を開拓し、関連する技術を発展させ、社会に貢献した。
|