• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of automatic potential construction for reaction molecular dynamics based on machine learning

Research Project

Project/Area Number 18K18801
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 18:Mechanics of materials, production engineering, design engineering, and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

Umeno Yoshitaka  東京大学, 生産技術研究所, 准教授 (40314231)

Project Period (FY) 2018-06-29 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Keywords原子間ポテンシャル / 反応力場 / 機械学習 / マルチフィジックス
Outline of Final Research Achievements

In this study we have developed a new algorithm of automated potential fitting, which dramatically improves efficiency and easiness of ReaxFF, as ReaxFF force fields are essential for reaction molecular dynamics which is a powerful tool to describe chemical reaction within the framework of atomistic modeling, without requiring computationally demanding quantum mechanical calculations. The algorithm is designed to renew a set of atomistic structures of reference data by evaluating the score of an optimized potential function. We picked the problem of NiO reduction as a test case and proved the efficiency of the developed algorithm by successful reproduction of accurate melting point and reasonable reduction process, which were not realized by existing force fields.

Academic Significance and Societal Importance of the Research Achievements

燃料電池の反応プロセスやガス環境下での材料破壊など、化学反応過程を原子レベルで明らかにすることが求められる問題は多く、これをスパコンなどの超大規模計算機を必要とすることなく効率的にシミュレーションする技術が反応分子動力学法であるが、そこで必要となる反応力場(原子間ポテンシャル)の作成は関数の複雑性のため極めて難しく、その技術は世界でも一部のグループに独占されていた。我々は独自の機械学習アルゴリズムによって力場作成の工程を自動化することで、反応力場作成を大幅に効率化・簡単化した。これによって、研究室レベルの計算機資源で化学反応過程の原子シミュレーションを行う基盤が整備された。

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • Research Products

    (4 results)

All 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Prediction of electronic structure in atomistic model using artificial neural network2019

    • Author(s)
      Yoshitaka Umeno, Atsushi Kubo
    • Journal Title

      Computational Materials Science

      Volume: 168 Pages: 164-171

    • DOI

      10.1016/j.commatsci.2019.06.005

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] 電子状態密度評価のためのニューラルネットワークモデルの構築2019

    • Author(s)
      久保淳、梅野宜崇
    • Organizer
      第24回計算工学講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Ni-O-H系の反応力場構築とNiO還元反応の分子動力学解析2019

    • Author(s)
      淺利孟弘,上野尊史,久保淳,梅野宜崇
    • Organizer
      第23回計算力学講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Prediction of electronic density of states in atomistic structure using artificial neural network model2019

    • Author(s)
      A. Kubo and Y. Umeno
    • Organizer
      ISAM4-2019: The fourth International Symposium on Atomistic and Multiscale Modeling of Mechanics and Multiphysics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2018-07-25   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi