Project/Area Number |
18K18809
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 18:Mechanics of materials, production engineering, design engineering, and related fields
|
Research Institution | Osaka University |
Principal Investigator |
Ohmi Hiromasa 大阪大学, 工学研究科, 助教 (00335382)
|
Project Period (FY) |
2018-06-29 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 水素 / 金属 / 配線 / プラズマ / 成膜 / 加工 / 化学輸送 / エッチング / ドライエッチング / 高圧 / 高速 / エコフレンドリー / 銅 |
Outline of Final Research Achievements |
In this study, we have developed the removal and deposition technologies for metals toward the wiring of electronic devices using hydrogen without using toxic chemicals with a heavy environmental load. By using high-density hydrogen plasma, a Cu etching rate attained to more than 50 times higher than that of low-pressure hydrogen plasma. In addition, by adding water or nitrogen to pure hydrogen plasma, more efficient copper etching could be achieved. The water-mixed hydrogen plasma also possessed etching potential for refractory metals such as Mo and W. Besides, a metallic copper film formation on a substrate was succeeded by using a copper compound produced through the etching reaction as a film precursor. Furthermore, it was confirmed that the metal surface after the pure hydrogen plasma treatment excited the localized plasmon.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、従来危険な酸やハロゲンガス等を用いることが絶対視された金属材料のエッチングを、水素だけでも高効率に実現できることを世界で初めて証明しただけなく、水素に窒素や水蒸気など、身近でありふれたガスを混合することで、そのエッチングレートが著しく増強されることを新たに発見したこと、さらには、高価な金属系の原料ガスを用いること無く、水素による金属エッチングで生成される化合物を用いた化学輸送成膜を世界で初めて実証した。得られた成果は、実用化に向けては未だ基礎的なものではあるが、低環境負荷な製造技術に向けた新たな加工/成膜原理の実証がなされており、今後の展開が期待されるものである。
|