Growth of micro and nano biological active site by oxidization of carbon surface
Project/Area Number |
18K18876
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 22:Civil engineering and related fields
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
YOSHIDA Naoko 名古屋工業大学, 工学(系)研究科(研究院), 准教授 (10432220)
|
Co-Investigator(Kenkyū-buntansha) |
カリタ ゴラップ 名古屋工業大学, 工学(系)研究科(研究院), 准教授 (20615629)
|
Project Period (FY) |
2018-06-29 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2019: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | 微生物燃料電池 / 酸化グラフェン / 炭素材料 / アノード電極 / 電流生産微生物 / 流れ / 電気化学培養 / 下水処理 / 酸化黒鉛 |
Outline of Final Research Achievements |
This study analyzed the differences of current production and metabolic pathways by Geobacter sp. on carbon anodes with and without the oxidation. Particularly in Geobacter bremensis R4 strain, differences of carbon materials such as graphite felt / graphene oxide showed different electron transfer pathways between cell to electrode, i.e. direct electron transfer from biofilm to anode and indirect electron transfer via water-soluble electron carrier. While, there is no significant difference in the metabolic pathway and the variety of cytochromes. For longer-term activation of current production, it is more essential to supply the substrate to the mature biofilm rather than the initial biofilm growth. One of the factors that enhances current production is the flow verbosity around the biofilm. The study demonstrated that the enhancement of current production by the flow velocity by the Michaelis-Menten equation-based model.
|
Academic Significance and Societal Importance of the Research Achievements |
微生物燃料電池は次世代の省エネルギーまたは創電型廃水処理技術として期待されている一方、電流生産が小さく効率化が望まれている.本研究は炭素材料表面の化学組成が微生物の2つの境界領域、すなわり細胞のペリプラズム空間とバイオフィルムの成長に影響し電流生産を促進することに着目したものである。研究の結果、特定の微生物において、炭素材料表面の化学組成が大きく代謝に影響することが示されたが、この性質は電流生産微生物に普遍的なものではなく効果は装置の性能を上げる効果は期待できないことがわかった.新たにバイオフィルム周りの流れが電流生産を活発化する現象を見出し、ミカエリスメンテン式で表せることを示した。
|
Report
(3 results)
Research Products
(15 results)