Optimization of structure of metamaterial perfect absorber and their application for high efficient heat radiator
Project/Area Number |
18K19038
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 30:Applied physics and engineering and related fields
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
Tanaka Takuo 国立研究開発法人理化学研究所, 開拓研究本部, 主任研究員 (40283733)
|
Co-Investigator(Kenkyū-buntansha) |
竹澤 晃弘 広島大学, 工学研究科, 准教授 (10452608)
|
Project Period (FY) |
2018-06-29 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2019: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2018: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
|
Keywords | メタマテリアル / 光吸収 / トポロジー最適化 / 有限要素法 / マスクレスリソグラフィ / 光吸収体 / 放熱デバイス / 熱放射効率 / 最適化アルゴリズム |
Outline of Final Research Achievements |
In this study, we conducted structural optimization of metamaterial absorbers and their application to thermal radiating devices. First of all, we performed structural optimization of multiscale metamaterial absorber that work in both the infrared and visible light regions individually. After the optimization, we designed the structure of a multiscale metamaterial by combining these two metamaterials and proposed its optimal configuration. Based on the obtained structures, we fabricated an infrared metamaterial perfect absorber composed of a silver nano-patch array. When this metamaterial absorber structure was attached onto the end face of a thermoelectric conversion device, we successfully achieved a temperature difference of more than 10 times and obtained a power density of 1.09 mW/cm2 compared to the case without the metamaterial absorber.
|
Academic Significance and Societal Importance of the Research Achievements |
複数のパラメータを持つ構造の最適化では,全てのパラメータの組み合わせを網羅的に探索することは困難である.そこで本研究ではトポロジカル最適化手法を用いて,大規模最適化問題の解法手法を開発した.この成果は,メタマテリアル吸収体構造の構造設計に留まらず,広く大規模最適化問題の解法手法として応用することが可能である.また,設計したメタマテリアル光吸収体を用いた熱電変換デバイスはメタマテリアル吸収体が持つ高い光吸収特性によって温度差を作り出す事ができるので,極めて温度差の小さい環境下においても動作する高効率熱電素子として応用できる可能性がある.
|
Report
(6 results)
Research Products
(8 results)