Project/Area Number |
18K19046
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 31:Nuclear engineering, earth resources engineering, energy engineering, and related fields
|
Research Institution | Saga University |
Principal Investigator |
Tanaka Tooru 佐賀大学, 理工学部, 教授 (20325591)
|
Co-Investigator(Kenkyū-buntansha) |
齊藤 勝彦 佐賀大学, シンクロトロン光応用研究センター, 助教 (40380795)
郭 其新 佐賀大学, シンクロトロン光応用研究センター, 教授 (60243995)
|
Project Period (FY) |
2018-06-29 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 高不整合材料 / 人工光合成 / マルチバンドギャップ半導体 |
Outline of Final Research Achievements |
Artificial photosynthesis, which uses sunlight and water to generate hydrogen, is expected to be a next-generation energy creation technology that can be stored inexhaustibly while reducing greenhouse gases such as carbon dioxide. In this research, we focused on ZnTeO, a highly mismatched semiconductor alloy material that enables unique band engineering by band anti-crossing interaction, unlike conventional semiconductor alloys, and aimed to realize an energy band suitable for hydrogen generation, thereby opening up a new and unprecedented artificial photosynthesis system. As a result, the pn heterojunction structure suitable for hydrogen generation was clarified for ZnTeO. Also, hydrogen generation using ZnTeO was demonstrated, and the relationship between the amount of hydrogen generated and the reaction time was clarified.
|
Academic Significance and Societal Importance of the Research Achievements |
低炭素社会の実現に向けて,莫大なエネルギーを有する太陽光と水を用いた水素発生は貯蔵可能なエネルギーの創出技術として注目を集めている。効率向上のためには太陽光に多く含まれる可視光を有効利用することが重要である。本研究では,従来の半導体混晶と異なりバンド反交差作用によるユニークなバンドエンジニアリングが可能な高不整合半導体材料ZnTeOに着目し,水素発生に適した特性が得られる構造,条件などについて検討を行った。本研究により初めて本材料で水素発生を実証することができ,また,種々の重要な基礎的知見を得ることができた。
|