Cellular membrane engineering of Escherichia coli using membrane lipids from hyperthermophilic archaea
Project/Area Number |
18K19170
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 38:Agricultural chemistry and related fields
|
Research Institution | Nagoya University |
Principal Investigator |
Hemmi Hisashi 名古屋大学, 生命農学研究科, 准教授 (60302189)
|
Project Period (FY) |
2018-06-29 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2019: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2018: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
|
Keywords | 古細菌 / 古細菌膜脂質 / イソプレノイド / メバロン酸経路 / 細胞膜 / 細胞膜エンジニアリング / 膜エンジニアリング / 大腸菌 / 膜脂質 / 生体膜エンジニアリング / 超好熱性古細菌 |
Outline of Final Research Achievements |
The research was aimed at the establishment of "cell membrane engineering" technology that might enable to change the properties of E. coli membrane by overproducing isoprenoid membrane lipid from a hyperthermophilic archaeon Aeropyrum pernix, which has long hydrocarbon chains. At the same time, we discovered the archaeal mevalonate pathway, which was a novel pathway that supplies biosynthetic precursors for isoprenoid. Thus, we examined the effect of the introduction of the pathway on microbial production of isoprenoid and therefore proved the increase in isoprenoid production when the host was cultivated semi-anaerobically. In addition, we succeeded in synthesizing an unnatural archaeal membrane lipid that has a long hydrocarbon chain by introducing genes from A. pernix and other organisms in combination into E. coli.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で取り扱った古細菌型メバロン酸経路は、既知のメバロン酸経路と比べ、エネルギー低消費型の代謝経路である。そのため、薬品や工業原料などの有用化合物を多く含むイソプレノイドの微生物生産に同経路を利用することで、宿主から生育に必要なエネルギーを大量に奪うことなく物質生産をさせることが可能になるかもしれない。また、本研究で合成に成功した非天然型古細菌膜脂質は、より厚く安定な細胞膜を構成することが予想される。したがって、大腸菌などの生体膜の性質を変化させて強い微生物を作る「細胞膜エンジニアリング」を今後確立する上で有用なツールとなりうる。
|
Report
(4 results)
Research Products
(40 results)