• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Is data compression ratio controlled by a cognitive entropy reduction?

Research Project

Project/Area Number 18K19773
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 60:Information science, computer engineering, and related fields
Research InstitutionUniversity of Tsukuba

Principal Investigator

Yamagiwa Shinichi  筑波大学, システム情報系, 准教授 (10574725)

Co-Investigator(Kenkyū-buntansha) 和田 耕一  筑波大学, システム情報系, 名誉教授 (30175145)
坂本 比呂志  九州工業大学, 大学院情報工学研究院, 教授 (50315123)
Project Period (FY) 2018-06-29 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2020: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywordsデータ圧縮
Outline of Final Research Achievements

The high definition multimedia data is getting larger in these days. In order to transfer such data among information equipment with maintaining the quality, we require high performance communication techniques in Gbps order. Considering the characteristics of multimedia data, this research utilized the entropy reduction that human intuitively performs. Then, this research tried to find a new data compression mechanism that the target throughput in the communication data path was achieved stably. Because the multimedia data is a continuous data stream, we need to develop a new mechanism that continuously transfers without any buffering among the equipment. In this research, combining the cognitive entropy reduction and the stream-based data compression technique, we have developed a new realtime data compression mechanism for the multimedia data.

Academic Significance and Societal Importance of the Research Achievements

知覚的に等価な品質を維持するが、データ量としては削減できるエントロピーの制御方法の原理を解明できたため、情報科学/認知科学/物理学にも通じる新たな真理を確立し、社会デザインや情報理論にも通じる飛躍的な科学の発展が見込まれる研究成果をもたらすことができた。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (1 results)

All 2021

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results)

  • [Journal Article] Stream-Based Visually Lossless Data Compression Applying Variable Bit-Length ADPCM Encoding2021

    • Author(s)
      Yamagiwa Shinichi、Ichinomiya Yuma
    • Journal Title

      Sensors

      Volume: 21 Issue: 13 Pages: 4602-4602

    • DOI

      10.3390/s21134602

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access

URL: 

Published: 2018-07-25   Modified: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi