• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Advance of artificial intelligence by theoretical investigation of deep learning

Research Project

Project/Area Number 18K19793
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 60:Information science, computer engineering, and related fields
Research InstitutionThe Institute of Statistical Mathematics

Principal Investigator

Fukumizu Kenji  統計数理研究所, 数理・推論研究系, 教授 (60311362)

Co-Investigator(Kenkyū-buntansha) 鈴木 大慈  東京大学, 大学院情報理工学系研究科, 准教授 (60551372)
今泉 允聡  東京大学, 大学院総合文化研究科, 准教授 (90814088)
Project Period (FY) 2018-06-29 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2020: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords人工知能 / 深層学習 / 機械学習 / ニューラルネットワーク / 理論解析
Outline of Final Research Achievements

This study theoretically analyzes the learning dynamics of deep neural networks with mathematical approaches. We have obtained the following results; (1) In estimating non-smooth functions, the deep neural networks have advantages over conventional models with fixed bases, (2) The sdalle point structure has been revelaed in the case that a network has surplus hidden units (3) Sufficient conditions have been obtained for the stability of deep generative models. Also, we have developed a meta-learing method for estimating causal directions with a small number of data.

Academic Significance and Societal Importance of the Research Achievements

深層学習は応用面からの成功により現在の人工知能の基盤技術となっているが,モデルが強い非線形性を持つことから理論的な解析を行うことは容易ではなくブラックボックスとして使われる場合が多い.本研究は数理的手法で深層学習の性質を理論的に明らかにするものであり,ブラックボックスを超えた深層学習の理論,特に学習によって得られたネットワークの信頼性や,学習アルゴリズムの安定性に関して重要な知見が得られた.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (29 results)

All 2021 2020 2019 2018 Other

All Int'l Joint Research (2 results) Journal Article (14 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 13 results,  Open Access: 11 results) Presentation (12 results) (of which Int'l Joint Research: 6 results,  Invited: 10 results) Remarks (1 results)

  • [Int'l Joint Research] Stanford University(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Cornell University(米国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] A General Class of Transfer Learning Regression without Implementation Cost2021

    • Author(s)
      Shunya Minami, Song Liu, Stephen Wu, Kenji Fukumizu, Ryo Yoshida
    • Journal Title

      Proceedings of 35th AAAI Conference on Artificial Intelligence

      Volume: 1 Pages: 1-6

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Meta Learning for Causal Direction2021

    • Author(s)
      Jean-Francois Ton, Dino Sejdinovic, Kenji Fukumizu
    • Journal Title

      Proceedings of 35th AAAI Conference on Artificial Intelligence

      Volume: 1 Pages: 1-6

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Exchangeable Deep Neural Networks for Set-to-Set Matching and Learning2020

    • Author(s)
      Saito, Y., Nakamura, T., Hachiya, H. and Fukumizu, K.
    • Journal Title

      Computer Vision -- ECCV 2020

      Volume: 1 Pages: 626-646

    • DOI

      10.1007/978-3-030-58520-4_37

    • ISBN
      9783030585198, 9783030585204
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Smoothness and Stability in GANs2020

    • Author(s)
      Chu, C. Minami, K. and Fukumizu, K.
    • Journal Title

      International Conferences on Learning Representations 2020

      Volume: 1 Pages: 1-8

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] On Random Subsampling of Gaussian Process Regression: A Graphon-Based Analysis2020

    • Author(s)
      Kohei.Hayashi. Masaaki.Imaizumi. Yuichi Yoshida
    • Journal Title

      Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR

      Volume: 108 Pages: 2055-2065

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Adaptive Approximation and Generalization of Deep Neural Network with Intrinsic Dimensionality2020

    • Author(s)
      Ryumei Nakada. Masaaki Imaizumi
    • Journal Title

      Journal of Machine Learning Research

      Volume: 21 Pages: 1-38

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Smoothness and Stability in GANs2020

    • Author(s)
      C. Chu, K. Minami, and K. Fukumzu
    • Journal Title

      International Conference on Representation Learing

      Volume: 1 Pages: 1-31

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Semi-flat minima and saddle points by embedding neural networks to overparameterization2019

    • Author(s)
      K. Fukumizu, S. Yamaguchi, Y. Mototake, and M. Tanaka
    • Journal Title

      Advances in Neural Processing Systems

      Volume: 32 Pages: 13868-13876

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A simple method to construct confidence bands in functional linear regression2019

    • Author(s)
      Masaaki Imaizumi and Kengo Kato
    • Journal Title

      Statistica Sinica

      Volume: *

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Statistically Efficient Estimation for Non-Smooth Probability Densities2018

    • Author(s)
      Masaaki Imaizumi, Takanori Maehara, Yuichi Yoshida
    • Journal Title

      Proceedings of Machine Learning Research Workshop & Conference Proceedings (AISTATS 2018)

      Volume: 84 Pages: 978-987

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Deep Neural Networks Learn Non-Smooth Functions Effectively2018

    • Author(s)
      今泉允聡、福水 健次
    • Journal Title

      2018年度統計関連学会連合大会講演予稿集

      Volume: ?

    • Related Report
      2018 Research-status Report
  • [Journal Article] Functional gradient boosting based on residual network perception2018

    • Author(s)
      Atsushi Nitanda and Taiji Suzuki
    • Journal Title

      Proceedings of the 35th International Conference on Machine Learning: PMLR

      Volume: 80:

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Gradient Layer: Enhancing the Convergence of Adversarial Training for Generative Models2018

    • Author(s)
      Atsushi Nitanda and Taiji Suzuki
    • Journal Title

      AISTATS2018, Proceedings of Machine Learning Research

      Volume: 84

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Fast generalization error bound of deep learning from a kernel perspective2018

    • Author(s)
      Taiji Suzuki
    • Journal Title

      AISTATS2018, Proceedings of Machine Learning Research

      Volume: 84

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Generalization Analysis of Deep Models with Loss Surface and Likelihood Models2021

    • Author(s)
      Masaaki Imaizumi
    • Organizer
      Workshop on Functional Inference and Machine Intelligence 2021
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 深層生成モデルの理論と応用2020

    • Author(s)
      福水健次
    • Organizer
      第5回 統計・機械学習若手シンポジウム
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Smoothness and Stability in Learning Generative Adversarial Networks2020

    • Author(s)
      Kenji Fukumizu
    • Organizer
      RIKEN AIP Mathematical Seminar
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Generalization Analysis for Mechanism of Deep Learning by Statistics and Learning Theory2020

    • Author(s)
      Masaaki Imaizumi
    • Organizer
      Seoul National University Seminar
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] 深層学習の原理の理解に向けた理論の試み2020

    • Author(s)
      今泉允聡
    • Organizer
      諸科学における大規模データと統計数理モデリング
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Fast convergence on perfect classification for functional data2020

    • Author(s)
      Tomoya Wakayama. Masaaki Imaizumi
    • Organizer
      Computational and Methodological Statistics
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Smoothness and Stability in Learning GANs2019

    • Author(s)
      Kenji Fukumizu
    • Organizer
      Workshop on Functional Inference and Machine Intelligence
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Generalization error of deep learning with connection to sparse estimation in function space2019

    • Author(s)
      Taiji Suzuki:
    • Organizer
      Workshop on Functional Inference and Machine Intelligence
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Compressing deep neural network and its generalization error analysis via kernel theory2019

    • Author(s)
      Taiji Suzuki
    • Organizer
      Reinforcement Learning & Biological Intelligence, learning from biology, learning for biology
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Deep Neural Networks Learn Non-Smooth Functions Effectively2018

    • Author(s)
      Masaaki Imaizumi and Kenji Fukumizu
    • Organizer
      ICML 2018 Workshop on Theory of Deep Learning
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 汎化誤差評価によるGANの理論解析2018

    • Author(s)
      今泉 允聡、福水 健次
    • Organizer
      第21回情報論的学習理論ワークショップ (IBIS 2018)
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Adaptivity of Deep ReLU Network for Learning in Besov Spaces.2018

    • Author(s)
      Taiji Suzuki
    • Organizer
      Forum "Math-for-Industry" 2018 - Big Data Analysis, AI, Fintech, Math in Finances and Economics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Kenji Fukumizu's home page

    • URL

      http://www.ism.ac.jp/~fukumizu/

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-07-25   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi