Search for prevention method of fetal dysfunction by placenta-on-a-chip
Project/Area Number |
18K19897
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 90:Biomedical engineering and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
|
Project Period (FY) |
2018-06-29 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2020: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | マイクロ・ナノデバイス / 細胞・組織 / 生物・生体工学 / 流体工学 / ナノバイオ / マイクロ流体デバイス / 胎盤 / 低酸素 |
Outline of Final Research Achievements |
Placenta-on-a-chip was used to reproduce a characteristic three-dimensional layered structure of human placenta, in which the syncytiotrophoblast and cytotrophoblast, as well as the fetal vasculature, are located across the stroma. Fibrin gel, fibrin gel mixed with vascular endothelial cells and fibroblast cells, and cell suspensions of placental cells were injected into the three parallel gel channels and their adjacent media channels at different timings to reveal the process of human placenta formation. In addition, quantitative evaluation of material exchange between mother and fetus was achieved by measuring permeability of the trophoblast and microvascular network under controlled culture conditions. Furthermore, we developed an experimental setup to observe the dynamics of a single layer of vascular endothelial cells under hypoxia and flow exposure, and showed that their stimuli promote morphological changes.
|
Academic Significance and Societal Importance of the Research Achievements |
胎盤の異常は、胎盤内の微小環境の異常に根本的な原因があると考えられる。しかし、胎盤の形成過程の直接的かつ経時的な観察が困難であることから、胎児機能不全の詳細な機序は未解明であり、効果的な予防法はまだ存在しない。ヒト胎盤機能チップは、母体と胎児が物質交換を行っている正にその場である胎盤内微小環境を再現し、酸素濃度・力学的刺激・化学的刺激など環境因子の変化に対する細胞群の動態と機能の評価と、それらのメカニズムの解明を可能にする。本技術は、胎児機能不全に対する予防法の確立に寄与する。
|
Report
(5 results)
Research Products
(22 results)