Project/Area Number |
18K19958
|
Research Category |
Fund for the Promotion of Joint International Research (Home-Returning Researcher Development Research)
|
Allocation Type | Multi-year Fund |
Review Section |
Science and Engineering
|
Research Institution | Hitachi,Ltd. (Research&Development Group) |
Principal Investigator |
Shinichi Saito 株式会社日立製作所(研究開発グループ), 基礎研究センタ, 主管研究員・部長 (80308212)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥61,880,000 (Direct Cost: ¥47,600,000、Indirect Cost: ¥14,280,000)
|
Keywords | フォトニクス / 量子技術 / 角運動量 / 光渦 / 偏光 / エンタングルメント / 強相関 / コヒーレント光 / 光量子 / スピン / 強相関系 / リー代数 / シリコンフォトニクス / Si Photonics / 量子光学 |
Outline of Final Research Achievements |
In this project, I was aiming to realise photonic strongly correlated system by manipulating angular momentum of coherent photons both theoretically and experimentally. I have shown that the Stokes parameters are expectation values of coherent photons. I have also shown the validity of commutation relationship for orbital angular momentum of photons. In a waveuide, I have theoretically proven that we can split spin and orbital angular momentum of photons. I have proposed Poincare rotator, which can realise an arbitrary superposition state of SU(2) in spin and orbital angular momentum. As a demonstration, I have realised photonic C60 and the coastline of the earth, drawn on Poincare sphere. I have also realised macroscopic entangled state of spin and orbital angular momentum. I have also experimentally obtained the images of singlet and triplet states after the Bell projection. It was beyond my expectation that the angular momentum of photons are related to Lie group.
|
Academic Significance and Societal Importance of the Research Achievements |
量子力学の創生に深く関わったアインシュタインは,光子とは何かを理解できなかったと述べています。本研究では、光の角運動量とは何かという基礎的な問題に対して,最先端の実験技術と場の量子論という理論的な枠組みで取り組みました.その結果,光の角運動量は量子的な性質を持っており,その状態を制御する事で様々な新しい応用が可能であることが分かりました.本研究に基づく偏光制御技術を用いると,現在の通信量を100倍程度増大できる可能性がある事が実験的に明らかになりました.また,光の角運動量を量子ビットとして動作させる事にも成功しました。今後,新しい国産光量子コンピュータや高感度の量子センサ応用が期待されます.
|