• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

International collaboration for the study of drug action based on real-world clinical data

Research Project

Project/Area Number 18KK0216
Research Category

Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 47:Pharmaceutical sciences and related fields
Research InstitutionKyoto University

Principal Investigator

Kaneko Shuji  京都大学, 医学研究科, 研究員 (60177516)

Co-Investigator(Kenkyū-buntansha) 白川 久志  京都大学, 薬学研究科, 准教授 (50402798)
宗 可奈子  京都大学, 薬学研究科, 助教 (50816684)
永安 一樹  京都大学, 薬学研究科, 助教 (00717902)
Project Period (FY) 2018-10-09 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥17,810,000 (Direct Cost: ¥13,700,000、Indirect Cost: ¥4,110,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2018: ¥8,060,000 (Direct Cost: ¥6,200,000、Indirect Cost: ¥1,860,000)
Keywordsリアルワールドデータ / 有害事象 / 化学構造 / 受容体親和性 / 機械学習 / ルールマイニング / 予測 / ビッグデータ / 電子カルテ / 医療情報 / オントロジ / 臨床ビッグデータ / 深層学習 / 薬物依存
Outline of Final Research Achievements

Regarding detection of drug interactions and discovery of adverse events using real world data (RWD), we developed a gold standard that covers adverse events consisting of 92 types of positive and negative control pairs. As a result of evaluating whether early detection of adverse events is possible by applying association rule mining to medical receipts, we succeeded in detecting adverse event signals earlier than conventional methods even when using monthly receipt data. For the prediction of the receptor affinity of compounds, we normalized the chemical structures and affinity data for 1.71 million compounds, applied machine learning to the relationship between chemical structural formulas and receptor affinity, and succeeded in predicting affinity for new chemical structures.

Academic Significance and Societal Importance of the Research Achievements

実臨床データからリアルタイムに有害事象や薬物相互作用を発見するための基礎的なプロトコルおよび評価基準を作成することに成功し、今後の臨床データの利活用が期待される。化合物の化学構造に基づく受容体親和性の予測についても精度の高い方策を見いだすことができ、創薬シーンへの活用が期待できる。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (11 results)

All 2024 2023 2021 2020

All Journal Article (9 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 9 results,  Open Access: 9 results) Patent(Industrial Property Rights) (2 results) (of which Overseas: 1 results)

  • [Journal Article] A Novel Strategy for the Discovery of Drug Targets: Integrating Clinical Evidence with Molecular Studies2024

    • Author(s)
      Kaneko Shuji
    • Journal Title

      Biological and Pharmaceutical Bulletin

      Volume: 47 Issue: 2 Pages: 345-349

    • DOI

      10.1248/bpb.b23-00831

    • ISSN
      0918-6158, 1347-5215
    • Year and Date
      2024-02-01
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Inhibitors of the Mechanistic Target of Rapamycin Can Ameliorate Bortezomib-Induced Peripheral Neuropathy2023

    • Author(s)
      Suzuki Mari、Zhou Zi Jian、Nagayasu Kazuki、Shirakawa Hisashi、Nakagawa Takayuki、Kaneko Shuji
    • Journal Title

      Biological and Pharmaceutical Bulletin

      Volume: 46 Issue: 8 Pages: 1049-1056

    • DOI

      10.1248/bpb.b22-00861

    • ISSN
      0918-6158, 1347-5215
    • Year and Date
      2023-08-01
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Lisinopril prevents bullous pemphigoid induced by dipeptidyl peptidase 4 inhibitors via the Mas receptor pathway2023

    • Author(s)
      Nozawa Keisuke、Suzuki Takahide、Kayanuma Gen、Yamamoto Hiroki、Nagayasu Kazuki、Shirakawa Hisashi、Kaneko Shuji
    • Journal Title

      Frontiers in Immunology

      Volume: 13 Pages: 1084960-1084960

    • DOI

      10.3389/fimmu.2022.1084960

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Increased expression of glutathione peroxidase 3 prevents tendinopathy by suppressing oxidative stress2023

    • Author(s)
      Furuta Haruka、Yamada Mari、Nagashima Takuya、Matsuda Shuichi、Nagayasu Kazuki、Shirakawa Hisashi、Kaneko Shuji
    • Journal Title

      Frontiers in Pharmacology

      Volume: 14 Pages: 1137952-1137952

    • DOI

      10.3389/fphar.2023.1137952

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Early Detection of Adverse Drug Reaction Signals by Association Rule Mining Using Large-Scale Administrative Claims Data2023

    • Author(s)
      Hiroki Yamamoto, Gen Kayanuma, Takuya Nagashima, Chihiro Toda, Kazuki Nagayasu, Shuji Kaneko
    • Journal Title

      Drug Safety

      Volume: - Issue: 4 Pages: 371-389

    • DOI

      10.1007/s40264-023-01278-4

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Striatal TRPV1 activation by acetaminophen ameliorates dopamine D2 receptor antagonists-induced orofacial dyskinesia2021

    • Author(s)
      Nagaoka Koki、Nagashima Takuya、Asaoka Nozomi、Yamamoto Hiroki、Toda Chihiro、Kayanuma Gen、Siswanto Soni、Funahashi Yasuhiro、Kuroda Keisuke、Kaibuchi Kozo、Mori Yasuo、Nagayasu Kazuki、Shirakawa Hisashi、Kaneko Shuji
    • Journal Title

      JCI Insight

      Volume: in press Issue: 10 Pages: 1-16

    • DOI

      10.1172/jci.insight.145632

    • NAID

      120007038817

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Drug Repurposing Prediction and Validation From Clinical Big Data for the Effective Treatment of Interstitial Lung Disease2021

    • Author(s)
      Siswanto Soni、Yamamoto Hiroki、Furuta Haruka、Kobayashi Mone、Nagashima Takuya、Kayanuma Gen、Nagayasu Kazuki、Imai Yumiko、Kaneko Shuji
    • Journal Title

      Frontiers in Pharmacology

      Volume: 12 Pages: 635293-635293

    • DOI

      10.3389/fphar.2021.635293

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Prediction of pharmacological activities from chemical structures with graph convolutional neural networks2021

    • Author(s)
      Sakai Miyuki、Nagayasu Kazuki、Shibui Norihiro、Andoh Chihiro、Takayama Kaito、Shirakawa Hisashi、Kaneko Shuji
    • Journal Title

      Scientific Reports

      Volume: 11 Issue: 1 Pages: 525-525

    • DOI

      10.1038/s41598-020-80113-7

    • NAID

      120006951708

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Drug Repositioning and Target Finding Based on Clinical Evidence2020

    • Author(s)
      Kaneko Shuji、Nagashima Takuya
    • Journal Title

      Biological and Pharmaceutical Bulletin

      Volume: 43 Issue: 3 Pages: 362-365

    • DOI

      10.1248/bpb.b19-00929

    • NAID

      130007804441

    • ISSN
      0918-6158, 1347-5215
    • Year and Date
      2020-03-01
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Patent(Industrial Property Rights)] 強迫性障害の治療剤2020

    • Inventor(s)
      金子周司、浅岡希美、幡鎌輝
    • Industrial Property Rights Holder
      金子周司、浅岡希美、幡鎌輝
    • Industrial Property Rights Type
      特許
    • Industrial Property Number
      2020-107436
    • Filing Date
      2020
    • Related Report
      2020 Research-status Report
  • [Patent(Industrial Property Rights)] ネジアの治療又は予防用組成物、及び遅発性ジスキネジアを治療又は予防するための有効成分のスクリーニング方法2020

    • Inventor(s)
      金子周司、長島卓也、長岡巧樹
    • Industrial Property Rights Holder
      金子周司、長島卓也、長岡巧樹
    • Industrial Property Rights Type
      特許
    • Filing Date
      2020
    • Acquisition Date
      2021
    • Related Report
      2020 Research-status Report
    • Overseas

URL: 

Published: 2018-10-12   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi